Advertisement

Image compression using explored bat algorithm by Renyi 2-d histogram based on multilevel thresholding

  • V. ManoharEmail author
  • G. Laxminarayana
  • T.  Satya Savithri
Special Issue

Abstract

The main objective of the image compression is to extract meaningful clusters from a given image. A meaningful cluster is possible with perfect threshold values, which are optimized by assuming Renyi entropy as an objective function. Due to the equal distribution of energy over the entire 1-D histogram, it is computationally complex. In order to improve the visual quality of a reconstructed image, a 2-D histogram based multilevel thresholding is proposed to maximize the Renyi entropy using explored bat algorithm. Thus procured results are compared with other optimization techniques and these are incorporated. It is the first time, incorporating a weighted peak signal to noise ratio (WPSNR) and the visual PSNR (VPSNR) in the proposed method, because of the failure in measuring the visual quality of peak signal to noise ratio (PSNR). Experimental results are examined on a standard set of images, which are observed precisely and efficiently in the multilevel thresholding problem.

Keywords

Explored bat algorithm Image compression 2-D histogram Thresholding Objective function Renyi entropy 

Notes

References

  1. 1.
    Skodras A, Christopoulos C, Ebrahimi T (2001) The JPEG 2000 still image compression standard. IEEE Signal Process Mag 18:36–58.  https://doi.org/10.1109/79.952804 CrossRefzbMATHGoogle Scholar
  2. 2.
    Haweel RT, ElKilani WS, Ramadan HH (2016) Fast approximate DCT with GPU implementation for image compression. J Vis Commun Image Represent 40:357–365.  https://doi.org/10.1016/j.jvcir.2016.07.003 CrossRefGoogle Scholar
  3. 3.
    Bruylants T, Munteanu A, Schelkens P (2015) Wavelet based volumetric medical image compression. Signal Proc Image Commun 31:112–133.  https://doi.org/10.1016/j.image.2014.12.007 CrossRefGoogle Scholar
  4. 4.
    Zhang M, Tong X (2017) Joint image encryption and compression scheme based on IWT and SPIHT. Opt Lasers Eng 90:254–274.  https://doi.org/10.1016/j.optlaseng.2016.10.025 CrossRefGoogle Scholar
  5. 5.
    Zhang GM, Olofsson T, Stepinski T (2004) Ultrasonic NDE image compression by transform and subband coding. NDT&E Intern 37:325–333.  https://doi.org/10.1016/j.ndteint.2003.10.007 CrossRefGoogle Scholar
  6. 6.
    Sunder RS, Eswaran C, Sriraam N (2006) Medical image compression using 3-D Hartley transform. Comput Biol Med 36:958–973.  https://doi.org/10.1016/j.compbiomed.2005.04.005 CrossRefGoogle Scholar
  7. 7.
    Hsu WY (2012) Improved watershed transforms for tumor segmentation: application to mammogram image compression. Expert Syst Appl 39:3950–3955.  https://doi.org/10.1016/j.eswa.2011.08.148 CrossRefGoogle Scholar
  8. 8.
    Venugopal D, Mohan S, Raja S (2016) An efficient block-based lossless compression of medical images. Optik 127:754–758.  https://doi.org/10.1016/j.ijleo.2015.10.154 CrossRefGoogle Scholar
  9. 9.
    Kiruba M, Sumathy V (2018) Register pre-allocation based folded discrete Tchebichef transform architecture for image compression. Integration 60:13–24.  https://doi.org/10.1016/j.vlsi.2017.07.003 CrossRefGoogle Scholar
  10. 10.
    Kumar M, Vaish A (2017) An efficient encryption then compression technique for encrypted images using SVD. Digit Signal Proc 60:81–89.  https://doi.org/10.1016/j.dsp.2016.08.011 CrossRefGoogle Scholar
  11. 11.
    Jain AK, Duin RPW, Mao J (2000) Statistical pattern recognition: a review. IEEE Trans Pattern Anal Mach Intell 22:4–37.  https://doi.org/10.1109/34.824819 CrossRefGoogle Scholar
  12. 12.
    Han X, Quan L, Xiong X, Almeter M, Xiang J, Lan Y (2017) A novel data clustering algorithm based on a modified gravitational search algorithm. Eng Appl Artif Intell 61:1–7.  https://doi.org/10.1016/j.engappai.2016.11.003 CrossRefGoogle Scholar
  13. 13.
    Karri C, Jena U (2016) Fast vector quantization using a bat algorithm for image compression. Eng Sci Technol Int J 19:769–781.  https://doi.org/10.1016/j.jestch.2015.11.003 CrossRefGoogle Scholar
  14. 14.
    Karri C, Jena U (2018) Image compression based on vector quantization using cuckoo search optimization technique. Ain Shams Eng J 9(4):1417–1431.  https://doi.org/10.1016/j.asej.2016.09.009 CrossRefzbMATHGoogle Scholar
  15. 15.
    Karri C, Jena U (2018) Hybrid gravitational search and pattern search-based image thresholding by optimising Shannon and fuzzy entropy for image compression. Int J Image Data Fusion 8(3):236–269.  https://doi.org/10.1080/19479832.2017.1338760 CrossRefGoogle Scholar
  16. 16.
    Sheeba K, Abdul Rahiman M (2019) Gradient based fractal image compression using Cayley table. Measurement 140:126–132.  https://doi.org/10.1016/j.measurement.2019.02.038 CrossRefGoogle Scholar
  17. 17.
    Luca A, Termini S (1972) A definition of a non probabilistic entropy in the setting of fuzzy sets theory. Inf Control 20:301–312.  https://doi.org/10.1016/s0019-9958(72)90199-4 CrossRefzbMATHGoogle Scholar
  18. 18.
    Sezgin M, Sankur B (2004) Survey over image thresholding techniques and quantitative performance evaluation. J Electron Imaging 13:146–165.  https://doi.org/10.1117/1.1631316 CrossRefGoogle Scholar
  19. 19.
    Kapur JN, Sahoo PK, Wong AKC (1985) A new method for gray level picture thresholding using the entropy of the histogram. Comput Vis Graph Image Proc 29:273–285.  https://doi.org/10.1016/0734-189x(85)90125-2 CrossRefGoogle Scholar
  20. 20.
    Otsu N (1979) A threshold selection from gray-level histograms. IEEE Trans Syst Man Cybern 9:62–66.  https://doi.org/10.1109/tsmc.1979.4310076 CrossRefGoogle Scholar
  21. 21.
    Yang CK, Tsai WH (1998) Color image compression using quantization thresholding and edge detection techniques all based on the moment preserving principle. Pattern Recognit Lett 19:205–215.  https://doi.org/10.1016/s0167-8655(97)00166-9 CrossRefGoogle Scholar
  22. 22.
    Kaur L, Gupta S, Chauhan RC, Saxena SC (2007) Medical ultrasound image compression using joint optimization of thresholding quantization and best-basis selection of wavelet packets. Digit Signal Proc 17:189–198.  https://doi.org/10.1016/j.dsp.2006.05.008 CrossRefGoogle Scholar
  23. 23.
    Tony F, Zhou H (2007) Total variation wavelet thresholding. J Sci Comput 32:315–341.  https://doi.org/10.1007/s10915-007-9133-0 MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Salleh MFM, Soraghan J (2007) A new multistage lattice vector quantization with adaptive sub band thresholding for image compression. EURASIP J Adv Signal Proc.  https://doi.org/10.1155/2007/92928 CrossRefzbMATHGoogle Scholar
  25. 25.
    Siraj S (2015) Comparative study of Birge–Massart strategy and unimodal thresholding for image compression using wavelet transform. Optik 126:5952–5955.  https://doi.org/10.1016/j.ijleo.2015.08.127 CrossRefGoogle Scholar
  26. 26.
    Kaveh A, Javaid AY, Ezzatollah S (2015) An efficient compression scheme based on adaptive thresholding in wavelet domain using particle swarm optimization. Signal Proc Image Commun 32:33–39.  https://doi.org/10.1016/j.image.2015.01.001 CrossRefGoogle Scholar
  27. 27.
    Rényi A (1960) On measures of information and entropy. In: Proceedings of the 4th Berkeley symposium on mathematical statistics and probability, vol I. University of California Press, Berkeley and Los Angeles, pp 547–561Google Scholar
  28. 28.
    Soham S, Swagatam D (2013) Multilevel image thresholding based on 2D histogram and maximum Tsallis entropy a differential evolution approach. IEEE Trans Image Process 22:4788–4797.  https://doi.org/10.1109/tip.2013.2277832 MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Rini DP, Shamsuddin SM, Yuhaniz SS (2011) Particle swarm optimization technique: system and challenges. Int J Comput Appl 14:19–27.  https://doi.org/10.5120/1810-2331 CrossRefGoogle Scholar
  30. 30.
    Chandra Sekhar GT, Sahu RK, Baliarsingh AK, Panda S (2015) Load frequency control of power system under deregulated environment using optimal firefly algorithm. Electric Power Energy Syst 74:195–211.  https://doi.org/10.1016/j.ijepes.2015.07.025 CrossRefGoogle Scholar
  31. 31.
    Yang XS (2010) A new metaheuristic bat-inspired algorithm In: Nature inspired cooperative strategies for optimization. Springer.  https://doi.org/10.1007/978-3-642-12538-6_6 CrossRefGoogle Scholar
  32. 32.
    Hooke R, Jeeves TA (1961) Direct search solution of numerical and statistical problems. J Assoc Comput. doi 10(1145/321062):321069zbMATHGoogle Scholar
  33. 33.
    Chiranjeevi K, Umaranjan J (2018) SAR image compression using adaptive differential evolution and pattern search based K-means vector quantization. Image Anal Stereol 37:35–54.  https://doi.org/10.5566/ias.1611 CrossRefzbMATHGoogle Scholar
  34. 34.
    Navas KA, Gayathri Devi KG, Athulya MS, Anjali V (2011) MWPSNR: a new image fidelity metric. IEEE Recent Adv Int Comput Syst.  https://doi.org/10.1109/raics.2011.6069386 CrossRefGoogle Scholar
  35. 35.
    Alexander T (2014) A visual PSNR measure of image quality. J Vis Commun Image Represent 25:874–878.  https://doi.org/10.1016/j.jvcir.2014.01.008 CrossRefGoogle Scholar
  36. 36.
    Teo P, Heeger D (1994) Perceptual image distortion. IEEE Int Conf Image Process.  https://doi.org/10.1109/icip.1994.413502 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Jawaharlal Nehru Technological UniversityHyderabadIndia

Personalised recommendations