Advertisement

Evolutionary Intelligence

, Volume 12, Issue 4, pp 677–688 | Cite as

A direct method for solving calculus of variations problems using the whale optimization algorithm

  • Seyed Hamed Hashemi MehneEmail author
  • Seyedali Mirjalili
Research Paper
  • 62 Downloads

Abstract

A numerical algorithm for solving problems of calculus of variations is proposed and analyzed in the present paper. The method is based on direct minimizing the functional in its discrete form with finite dimension. To solve the resulting optimization problem , the recently proposed whale optimization algorithms is used and adopted. The method proposed in this work is capable of solving constrained and unconstrained problems with fixed or free endpoint conditions. Numerical examples are given to check the validity and accuracy of the proposed method in practice. The results show the superior accuracy and efficiency of the proposed technique as compared to other numerical methods.

Keywords

Calculus of variations Whale optimization algorithm Numerical solution Finite difference 

Notes

References

  1. 1.
    Abdel-Basset M, El-Shahat D, Sangaiah AK (2019) A modified nature inspired meta-heuristic whale optimization algorithm for solving 0–1 knapsack problem. Int J Mach Learn Cybern 10(3):495–514CrossRefGoogle Scholar
  2. 2.
    Abdulaziz O, Hashim I, Chowdhury MSH (2008) Solving variational problems by homotopy perturbation method. Int J Numer Methods Eng 75(6):709–721MathSciNetCrossRefGoogle Scholar
  3. 3.
    Aubert G, Vese L (1997) A variational method in image recovery. SIAM J Numer Anal 34(5):1948–1979MathSciNetCrossRefGoogle Scholar
  4. 4.
    Chen Y, Vepa R, Shaheed MH (2018) Enhanced and speedy energy extraction from a scaled-up pressure retarded osmosis process with a whale optimization based maximum power point tracking. Energy 153:618–627CrossRefGoogle Scholar
  5. 5.
    Dehghan M, Tatari M (2006) The use of Adomian decomposition method for solving problems in calculus of variations. Math Probl Eng 2006:1–12MathSciNetCrossRefGoogle Scholar
  6. 6.
    Ghasemi M (2016) On using cubic spline for the solution of problems in calculus of variations. Numer Algorithms 73(3):685–710MathSciNetCrossRefGoogle Scholar
  7. 7.
    Guo K, Liu B, Li X, Liu H, Liu C (2016) Flow pattern construction-based tubular heat transfer intensification using calculus of variations. Chem Eng Sci 152(2):568–578CrossRefGoogle Scholar
  8. 8.
    Jadhav PP, Joshi SD (2018) Fractional weightage based objective function to a hybrid optimization algorithm for model transformation. Evol Intell.  https://doi.org/10.1007/s12065-018-0179-8 CrossRefGoogle Scholar
  9. 9.
    Kamgar R, Khatibinia M, Khatibinia M (2019) Optimization criteria for design of tuned mass dampers including soil–structure interaction effect. Int J Optim Civil Eng 9(2):213–232Google Scholar
  10. 10.
    Kamien ML, Schwartz NL (2012) Dynamic optimization: the calculus of variations and optimal control in economics and management, 2nd edn. Dover Publications, New YorkzbMATHGoogle Scholar
  11. 11.
    Kave A, Ilchi Ghazaan M (2017) Enhanced whale optimization algorithm for sizing optimization of skeletal structures. Mech Based Des Struct Mach: Int J 45(3):345–362CrossRefGoogle Scholar
  12. 12.
    Komzsik L (2009) Applied calculus of variations for engineers. CRC Press, Boca RatonzbMATHGoogle Scholar
  13. 13.
    Levin Y, Nediak M, Ben-Israel A (2002) A direct Newton method for calculus of variations. J Comput Appl Math 139(2):197–213MathSciNetCrossRefGoogle Scholar
  14. 14.
    Maleki M, Mashali-Firouzi M (2010) A numerical solution of problems in calculus of variation using direct method and nonclassical parameterization. J Comput Appl Math 234(5):1364–1373MathSciNetCrossRefGoogle Scholar
  15. 15.
    Malinowska AB, Torres DFM (2010) Leitmann’s direct method of optimization for absolute extrema of certain problems of the calculus of variations on time scales. Appl Math Comput 217(3):1158–1162MathSciNetzbMATHGoogle Scholar
  16. 16.
    Mehne HH, Mirjalili S (2018) A parallel numerical method for solving optimal control problems based on whale optimization algorithm. Knowl-Based Syst 151(1):114–123CrossRefGoogle Scholar
  17. 17.
    Meucci A, Nicolosi M (2016) Dynamic portfolio management with views at multiple horizons. Appl Math Comput 274:495–518MathSciNetzbMATHGoogle Scholar
  18. 18.
    Miao Y, Zhao M, Makis V, Lin J (2019) Optimal swarm decomposition with whale optimization algorithm for weak feature extraction from multicomponent modulation signal. Mech Syst Signal Process 122:673–691CrossRefGoogle Scholar
  19. 19.
    Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61CrossRefGoogle Scholar
  20. 20.
    Mirjalili S (2015) Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl-Based Syst 89:228–249CrossRefGoogle Scholar
  21. 21.
    Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67CrossRefGoogle Scholar
  22. 22.
    Mirjalili SZ, Mirjalili SM, Saremi S, Mirjalili S (2020) Whale optimization algorithm: theory, literature review, and application in designing photonic crystal filters. In: Mirjalili S, Song Dong J, Lewis A (eds) Nature-inspired optimizers. studies in computational intelligence, vol 811. Springer, ChamCrossRefGoogle Scholar
  23. 23.
    Mohammadi R, Shamsyeh Zahedi M, Bayat Z (2015) Numerical solution of calculus of variation problems via exponential spline method. Math Sci Lett: Int J 4(2):101–108Google Scholar
  24. 24.
    Morrison D (1962) Optimal mesh size in the numerical integration of an ordinary differential equation. J ACM 9(1):98–103CrossRefGoogle Scholar
  25. 25.
    Mostafa A, Hassanien AE, Houseni M, Hefny H (2017) Liver segmentation in MRI images based on whale optimization algorithm. Multimed Tools Appl 76(23):24931–24954CrossRefGoogle Scholar
  26. 26.
    Nazemi AR, Hesam S, Haghbin A (2013) A fast numerical method for solving calculus of variation problems. Adv Model Optim 15(2):133–149zbMATHGoogle Scholar
  27. 27.
    Oliva D, Abd El Aziz M, Ella Hassanien A (2017) Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm. Appl Energy 200:141–154 (author links open overlay panel)CrossRefGoogle Scholar
  28. 28.
    Razzaghi M, Marzban HR (2000) A hybrid analysis direct method in the calculus of variations. Int J Comput Math 75(3):259–269MathSciNetCrossRefGoogle Scholar
  29. 29.
    Razzaghi M, Yousefi S (2001) Legendre wavelets method for the solution of nonlinear problems in the calculus of variations. Math Comput Modell 34(1–2):45–54MathSciNetCrossRefGoogle Scholar
  30. 30.
    Rudin W (1976) Principles of mathematical analysis. McGraw Hill, New York CityzbMATHGoogle Scholar
  31. 31.
    Saadatmandi A, Dehghan M (2008) The numerical solution of problems in calculus of variation using Chebyshev finite difference method. Phys Lett A 372(22):4037–4040CrossRefGoogle Scholar
  32. 32.
    Sadiku MNO (2001) Numerical techniques in electromagnetics (second edition), chapter 4. CRC Press, Boca RatonzbMATHGoogle Scholar
  33. 33.
    Sun Y, Wang X, Chen Y, Liu Z (2018) A modified whale optimization algorithm for large-scale global optimization problems. Expert Syst Appl 114:563–577CrossRefGoogle Scholar
  34. 34.
    Tharwat A, Moemen YS, Hassanien AE (2017) Classification of toxicity effects of biotransformed hepatic drugs using whale optimized support vector machines. J Biomed Inform 68:132–149CrossRefGoogle Scholar
  35. 35.
    Venugopal N, Grandhi RV, Hankey WL, Belcher PJ (1991) Automated trajectory synthesis for hypersonic vehicles using energy management and variational calculus techniques. Acta Astronaut 25(11):669–678CrossRefGoogle Scholar
  36. 36.
    Yousefi SA, Dehghan M (2010) The use of He’s variational iteration method for solving variational problems. Int J Comput Math 87(6):1299–1314MathSciNetCrossRefGoogle Scholar
  37. 37.
    Zarebnia M, Birjandi M (2012) The numerical solution of problems in calculus of variation using B-spline collocation method. J Appl Math 2012, 605741.  https://doi.org/10.1155/2012/605741 MathSciNetCrossRefGoogle Scholar
  38. 38.
    Zhang X, Liu Z, Miao Q, Wang L (2018) Bearing fault diagnosis using a whale optimization algorithm-optimized orthogonal matching pursuit with a combined time–frequency atom dictionary. Mech Syst Signal Process 107:29–42CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Aerospace Research InstituteTehranIran
  2. 2.Institute for Integrated and Intelligent SystemsGriffith UniversityBrisbaneAustralia

Personalised recommendations