Advertisement

Evolutionary Intelligence

, Volume 12, Issue 2, pp 113–129 | Cite as

A survey on particle swarm optimization with emphasis on engineering and network applications

  • Mohammed ElbesEmail author
  • Shadi Alzubi
  • Tarek Kanan
  • Ala Al-Fuqaha
  • Bilal Hawashin
Review Article

Abstract

Swarm intelligence is a kind of artificial intelligence that is based on the collective behavior of the decentralized and self-organized systems. This work focuses on reviewing a heuristic global optimization method called particle swarm optimization (PSO). This includes the mathematical representation of PSO in contentious and binary spaces, the evolution and modifications of PSO over the last two decades. We also present a comprehensive taxonomy of heuristic-based optimization algorithms such as genetic algorithms, tabu search, simulated annealing, cross entropy and illustrate the advantages and disadvantages of these algorithms. Furthermore, we present the application of PSO on graphics processing unit and show various applications of PSO in networks.

Keywords

Heuristic-based optimization Particle swarm optimization Taxonomy PSO network applications 

Notes

References

  1. 1.
    Dorigo M, Blum C (2005) Ant colony optimization theory: a survey. Theor Comput Sci 344(2):243–278MathSciNetzbMATHGoogle Scholar
  2. 2.
    Virágh C, Vásárhelyi G, Tarcai N, Szörényi T, Somorjai G, Nepusz T, Vicsek T (2014) Flocking algorithm for autonomous flying robots. Bioinspir Biomim 9(2):025012Google Scholar
  3. 3.
    Zhang Y, Agarwal P, Bhatnagar V, Balochian S, Yan J (2013) Swarm intelligence and its applications. Sci World J.  https://doi.org/10.1155/2013/528069 Google Scholar
  4. 4.
    Bonyadi MR, Michalewicz Z (2017) Particle swarm optimization for single objective continuous space problems: a review. Evol Comput 25(1):1–54.  https://doi.org/10.1162/EVCO_r_00180 Google Scholar
  5. 5.
    Garro BA, Vázquez RA (2015) Designing artificial neural networks using particle swarm optimization algorithms. Comput Intell Neurosci 2015:61Google Scholar
  6. 6.
    Chen X, Li Y (2006) Neural network training using stochastic PSO. In: International conference on neural information processing. Springer, pp 1051–1060Google Scholar
  7. 7.
    Borni A, Abdelkrim T, Zaghba L, Bouchakour A, Lakhdari A, Zarour L (2017) Fuzzy logic, PSO based fuzzy logic algorithm and current controls comparative for grid-connected hybrid system. In: AIP conference proceedings, vol 1814, AIP Publishing, p 020006Google Scholar
  8. 8.
    Bachache NK, Wen J (2013) Design fuzzy logic controller by particle swarm optimization for wind turbine. In: Ying T, Yuhui S, Hongwei M (eds) Advances in swarm intelligence. Springer, Berlin, pp 152–159Google Scholar
  9. 9.
    Engelbrecht AP (2013) Particle swarm optimization: global best or local best? In: Proceedings of the 2013 BRICS congress on computational intelligence and 11th Brazilian congress on computational intelligence, IEEE computer society, pp 124–135Google Scholar
  10. 10.
    Poli R (2008) Analysis of the publications on the applications of particle swarm optimisation. J Artif Evol Appl.  https://doi.org/10.1155/2008/685175 Google Scholar
  11. 11.
    Banks A, Vincent J, Anyakoha C (2007) A review of particle swarm optimization. Part I: background and development. Nat Comput 6(4):467–484MathSciNetzbMATHGoogle Scholar
  12. 12.
    Elbes M, Al-Fuqaha A, Rayes A (2012) Gyroscope drift correction based on TDoA technology in support of pedestrian dead reckoning. In: Globecom workshops (GC Wkshps), 2012 IEEE, pp 314–319Google Scholar
  13. 13.
    Banks A, Vincent J, Anyakoha C (2008) A review of particle swarm optimization. Part II: hybridisation, combinatorial, multicriteria and constrained optimization, and indicative applications. Nat Comput 7(1):109–124MathSciNetzbMATHGoogle Scholar
  14. 14.
    AlFuqaha A, Elbes M, Rayes A (2013) An intelligent data fusion technique based on the particle filter to perform precise outdoor localization. Int J Pervasive Comput Commun 9(2):163–183.  https://doi.org/10.1108/IJPCC-02-2013-0001 Google Scholar
  15. 15.
    Al-Fuqaha A, Kountanis D, Cooke S, Elbes M, Zhang J (2010) A genetic approach for trajectory planning in non-autonomous mobile ad-hoc networks with QOS requirements. In: GLOBECOM workshops (GC Wkshps), 2010 IEEE, pp 1097–1102Google Scholar
  16. 16.
    Temür R, Sait TY, Toklu YC (2015) Geometrically nonlinear analysis of trusses using particle swarm optimization. Recent advances in swarm intelligence and evolutionary computation. Springer, Berlin, pp 283–300Google Scholar
  17. 17.
    Elbes M, Al-Fuqaha A (2013) Design of a social collaboration and precise localization services for the blind and visually impaired. Proced Comput Sci 21:282–291Google Scholar
  18. 18.
    Li Y, Zhan Z-H, Lin S, Zhang J, Luo X (2015) Competitive and cooperative particle swarm optimization with information sharing mechanism for global optimization problems. Inf Sci 293:370–382Google Scholar
  19. 19.
    Zhang Y, Wang S, Ji G (2015) A comprehensive survey on particle swarm optimization algorithm and its applications. Math Probl Eng.  https://doi.org/10.1155/2015/931256 MathSciNetzbMATHGoogle Scholar
  20. 20.
    Pi Q ,Ye H (2015) Survey of particle swarm optimization algorithm and its applications in antenna circuit. In: 2015 IEEE international conference on communication problem-solving (ICCP), pp 492–495Google Scholar
  21. 21.
    Yang B, Chen Y, Zhao Z (2007) Survey on applications of particle swarm optimization in electric power systems. In: 2007 IEEE international conference on control and automation, pp 481–486Google Scholar
  22. 22.
    Keisuke K (2009) Particle swarm optimization—a survey. IEICE Trans Inf Syst 92(7):1354–1361Google Scholar
  23. 23.
    Vrahatis M, Parsopoulos K (2002) Particle swarm optimization method for constrained optimization problems. Front Artif Intell Appl 76:215–20zbMATHGoogle Scholar
  24. 24.
    Carlos E, Alexander M, Roberto S, Lozano Jose A (2013) On the taxonomy of optimization problems under estimation of distribution algorithms. Evolut Comput 21(3):471–495Google Scholar
  25. 25.
    Jacobson L, Kanber B (2015) Genetic algorithms in Java basics. Springer, BerlinGoogle Scholar
  26. 26.
    Moorkamp M (2005) Genetic algorithms: a step by step tutorial. Dublin Institute for Advanced Studies, BarcelonaGoogle Scholar
  27. 27.
    Parker PB (1999) Genetic algorithms and their use in geophysical problems. Technical report, Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)Google Scholar
  28. 28.
    Wang Y (2018) Improved OTSU and adaptive genetic algorithm for infrared image segmentation. In: 2018 Chinese control and decision conference (CCDC), IEEE, 2018Google Scholar
  29. 29.
    Pham D, Karaboga D (2012) Intelligent optimisation techniques: genetic algorithms, tabu search, simulated annealing and neural networks. Springer Science & Business Media, New YorkzbMATHGoogle Scholar
  30. 30.
    Ke Q, Jiang T, De MS (1997) A tabu search method for geometric primitive extraction 1. Pattern Recognit Lett 18(14):1443–1451zbMATHGoogle Scholar
  31. 31.
    Lamont G, Coello C, Van Veldhuizen D (2002) Evolutionary algorithms for solving multi-objective problems. Springer, New YorkzbMATHGoogle Scholar
  32. 32.
    Siarry P, Berthiau G (1997) Fitting of tabu search to optimize functions of continuous variables. Int J Numer Methods Eng 40(13):2449–2457MathSciNetzbMATHGoogle Scholar
  33. 33.
    Kirkpatrick S, Gelatt C, Vecchi MP (1993) Optimization by simulated annealing. Science 220:671MathSciNetzbMATHGoogle Scholar
  34. 34.
    Koziel S, Rojas AL, Moskwa S (2018) Power loss reduction through distribution network reconfiguration using feasibility-preserving simulated annealing. In: 2018 19th International scientific conference on electric power engineering (EPE). IEEEGoogle Scholar
  35. 35.
    Breno de ARA, Niraldo RF (2018) Simulated annealing and tabu search applied on network reconfiguration in distribution systems. In: 2018 Simposio Brasileiro de Sistemas Eletricos (SBSE). IEEE, 2018Google Scholar
  36. 36.
    Ma R, Wang Y, Hu W, Zhu X, Zhang K (2018) Optimum design of multistage half-band fir filter for audio conversion using a simulated annealing algorithm. In: 2018 13th IEEE conference on industrial electronics and applications (ICIEA). IEEEGoogle Scholar
  37. 37.
    Geem Z, Hwangbo H (2006) Application of harmony search to multi-objective optimization for satellite heat pipe design. Master’s thesisGoogle Scholar
  38. 38.
    Woo GZ, Hoon KJ, Loganathan GV (2001) A new heuristic optimization algorithm: harmony search. Simulation 76(2):60–68Google Scholar
  39. 39.
    Lee K, Geem Z (2005) A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice. Comput Methods Appl Mech Eng 194:3902–3933zbMATHGoogle Scholar
  40. 40.
    Mahdavi M, Fesangharyb M, Damangirb E (2007) An improved harmony search algorithm for solving optimization problems. Appl Math Comput 188(2):1567–1579MathSciNetGoogle Scholar
  41. 41.
    Heegaard P, Wittner O, Helvik B, Nicola V (2004) Distributed asynchronous algorithm for cross-entropy-based combinatorial optimization. Rare event simulation and combinatorial optimization (RESIM/COP), Budapest, Hungary, 2004Google Scholar
  42. 42.
    Schug A, Herges T, Wenzel W (2003) Reproducible protein folding with the stochastic tunneling method. Phys Rev Lett 91(15):2–10Google Scholar
  43. 43.
    Mayer BE, Hamacher K (2014) Stochastic tunneling transformation during selection in genetic algorithm. In: Proceedings of the 2014 annual conference on genetic and evolutionary computation, GECCO ’14, New York, NY, USA, 2014, ACM, pp 801–806Google Scholar
  44. 44.
    Hamacher K (2013) A new hybrid metaheuristic—combining stochastic tunneling and energy landscape paving. In: María JB, Christian B, Paola F, Andrea R, Michael S (eds) Hybrid metaheuristics. Springer, Berlin, pp 107–117Google Scholar
  45. 45.
    Wenzel W, Hamacher K (1999) Stochastic tunneling approach for global minimization of complex potential energy landscapes. Phys Rev Lett 82(15):3003MathSciNetzbMATHGoogle Scholar
  46. 46.
    De Boer P, Kroese P, Mannor S, Rubinstein R (2004) A tutorial on the cross-entropy method. Ann Oper Res 134(1):254–5330MathSciNetzbMATHGoogle Scholar
  47. 47.
    Rubinstein RY, Kroese DP (2004) The cross-entropy method: a unified approach to combinatorial optimization, Monte-Carlo simulation and machine learning. Springer, New York.  https://doi.org/10.1007/978-1-4757-4321-0 (ISBN: 978-1-4757-4321-0) zbMATHGoogle Scholar
  48. 48.
    Kennedy J, Eberhart RC (1997) A discrete binary version of the particle swarm algorithm. In: 1997 IEEE international conference on systems, man, and cybernetics. Computational cybernetics and simulation, vol 5, pp 4104–4108Google Scholar
  49. 49.
    Heppner F, Grenander U (1990) A stochastic nonlinear model for coordinate bird flocks. Ubiquity Chaos 233:238Google Scholar
  50. 50.
    Hu X, Eberhart RC (2006) Solving constrained nonlinear optimization problems with particle swarm optimization. In: Cybernetics and intelligent systems IEEE conferenceGoogle Scholar
  51. 51.
    Lee K, Park J (2006) Application of particle swarm optimization to economic dispatch problem: advantages and disadvantages? In: IEEE PSCEGoogle Scholar
  52. 52.
    Bratton D, Kennedy J (2007) Defining a standard for particle swarm optimization. In: SIS 2007. IEEE swarm intelligence symposium, 2007, AprilGoogle Scholar
  53. 53.
    Zhang L, Hu S, Yu H (2003) A new approach to improve particle swarm optimization, volume 2723/2003. Genet Evolut Comput. ISBN 978-3-540-40602-0Google Scholar
  54. 54.
    Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proc. IEEE Int’l, pp 1942–1948, vol 4 conference on neural networksGoogle Scholar
  55. 55.
    del Valle Y, Digman M, Gray A, Perkel J, Venayagamoorthy GK, Harley RG (2008) Enhanced particle swarm optimizer for power system applications. In: 2008 IEEE swarm intelligence symposium, pp 1–7Google Scholar
  56. 56.
    Fan HY (2002) A modification to particle swarm optimization algorithm? Eng Comput 19(7–8):970–989zbMATHGoogle Scholar
  57. 57.
    Witt C, Sudholt D (2008) Runtime analysis of binary PSO. In: Proceedings of the 10th annual conference on genetic and evolutionary computation, Atlanta, GA, USA, pp 135–142Google Scholar
  58. 58.
    Khanesar MA, Teshnehlab M, Shoorehdeli MA (2007) A novel binary particle swarm optimization. In: 2007 Mediterranean conference on control automation, pp 1–6, JuneGoogle Scholar
  59. 59.
    Gao F, Gui G, Zhao Q (2006) Application of improved discrete particle swarm algorithm in partner selection of virtual enterprise. IJCSNS Int J Comput Sci Netw Secur 6:208–212Google Scholar
  60. 60.
    Hereford J, Gerlach H (2008) Integer-valued particle swarm optimization applied to Sudoku puzzles. SIS IEEE intelligence symposium, 2008Google Scholar
  61. 61.
    Shi WM, Shen Q, Ye BX, Kong W (2007) A combination of modified particle swarm optimization algorithm and support vector machine for gene selection and tumor classification? Talanta 71:1679–1683Google Scholar
  62. 62.
    Yu H, Gu G, Liu H, Shen J, Zhu C (2008) A novel discrete particle swarm optimization algorithm for microarray data-based tumor marker gene selection. In: 2008 International conference on computer science and software engineering, vol 1, pp 1057–1060Google Scholar
  63. 63.
    Droste S, Jansen T, Wegener I (2002) On the analysis of the (1+1) evolutionary algorithm? Theor Comput Sci 276:51MathSciNetzbMATHGoogle Scholar
  64. 64.
    Hoeffding W (1994) Probability inequalities for sums of bounded random variables. Springer, New York, pp 409–426Google Scholar
  65. 65.
    Doerr B, Neumann F, Sudholt D, Witt C (2007) On the runtime analysis of the 1-ANT ACO algorithm. In: Proc. of GECCO 07, ACM, pp 33–40Google Scholar
  66. 66.
    Nvidia Corp Website (2012) NVIDIA CUDA C Programming Guide, version 4.2. https://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
  67. 67.
    Kaur J, Singh S, Singh S (2016) Parallel implementation of PSO algorithm using GPGPU. In: Computational intelligence and communication technology (CICT), 2016 second international conference on IEEE, pp 155–159Google Scholar
  68. 68.
    Zhou Y, Tan Y (2009) GPU-based parallel particle swarm optimization. In: Evolutionary computation, 2009. CEC’09. IEEE Congress on IEEE, pp 1493–1500Google Scholar
  69. 69.
    Hung Y, Wang W (2012) Accelerating parallel particle swarm optimization via GPU. Optim Methods Softw 27(1):33–51zbMATHGoogle Scholar
  70. 70.
    Wu Q, Xiong F, Wang F, Xiong Y (2016) Parallel particle swarm optimization on a graphics processing unit with application to trajectory optimization. Eng Optim 48(10):1679–1692MathSciNetGoogle Scholar
  71. 71.
    Nobile MS, Besozzi D, Cazzaniga P, Mauri G, Pescini D (2012) A GPU-based multi-swarm PSO method for parameter estimation in stochastic biological systems exploiting discrete-time target series. In: Mario G, Leonardo V, William SB (eds) Evolutionary computation, machine learning and data mining in bioinformatics. Springer, Berlin, pp 74–85Google Scholar
  72. 72.
    Kintsakis AM, Chrysopoulos A, Mitkas PA (2015) Agent-based short-term load and price forecasting using a parallel implementation of an adaptive PSO-trained local linear wavelet neural network. In: European Energy Market (EEM), 2015 12th international conference on the IEEE, pp 1–5Google Scholar
  73. 73.
    Ouyang A, Zhuo Tang X, Zhou YX, Pan G, Li K (2015) Parallel hybrid PSO with cuda for lD heat conduction equation. Comput Fluids 110:198–210MathSciNetzbMATHGoogle Scholar
  74. 74.
    Tan Y (2016) GPU-based parallel implementation of swarm intelligence algorithms. Morgan Kaufmann, BurlingtonGoogle Scholar
  75. 75.
    Maruf HM, Hattori H, Fujimoto N (2016) A CUDA implementation of the standard particle swarm optimization. In: Symbolic and numeric algorithms for scientific computing (SYNASC), 2016 18th international symposium on IEEE, pp 219–226Google Scholar
  76. 76.
    Atashpendar A, Dorronsoro B, Danoy G, Bouvry P (2018) A scalable parallel cooperative coevolutionary PSO algorithm for multi-objective optimization. J Parallel Distrib Comput 112:111–125Google Scholar
  77. 77.
    Jararweh Y, Alzubi S, Hariri S (2011) An optimal multi-processor allocation algorithm for high performance GPU accelerators. In: 2011 IEEE Jordan conference on applied electrical engineering and computing technologies (AEECT), pp 1–6, Dec 2011Google Scholar
  78. 78.
    AlZubi S, Jararweh Y, Shatnawi R (2012) Medical volume segmentation using 3D multiresolution analysis. In: 2012 International conference on innovations in information technology (IIT)Google Scholar
  79. 79.
    AlZu’bi S, Shehab MA, Al-Ayyoub M, Benkhelifa E, Jararweh Y (2016) Parallel implementation of FCM-based volume segmentation of 3D images. In: 2016 IEEE/ACS 13th international conference of computer systems and applications (AICCSA), pp 1–6Google Scholar
  80. 80.
    Kothari V, Anuradha J, Shah S, Mittal P (2012) A survey on particle swarm optimization in feature selection. In: Krishna PV, Babu MR, Ezendu A (eds) Global trends in information systems and software applications. Springer, Berlin, pp 192–201Google Scholar
  81. 81.
    Souad LM-S (2015) A survey of particle swarm optimization techniques for solving university examination timetabling problem. Artif Intell Rev 44(4):537–546Google Scholar
  82. 82.
    Sun S, Abraham A, Zhang G, Liu H (2007) A particle swarm optimization algorithm for neighbor selection in peer-to-peer networks. In: Computer information systems and industrial management applications, 2007. CISIM ’07. 6th International conference on June, pp 166–172Google Scholar
  83. 83.
    Koo Simon GM, Karthik K, George LCS (2006) On neighbor-selection strategy in hybrid peer-to-peer networks. Fut Gener Comput Syst 22(7):732–741Google Scholar
  84. 84.
    Papagianni C, Papadopoulos K, Pampas C, Tselikas ND, Kaklamani DT, Venieris IS (2008) Communication network design using particle swarm optimization. In: 2008 international multiconference on computer science and information technology, pp 915–920Google Scholar
  85. 85.
    Pióro M, Medhi D (2004) Routing, flow, and capacity design in communication and computer networks. Elsevier, AmsterdamzbMATHGoogle Scholar
  86. 86.
    Mauricio GCR, Panos MP (2006) Handbook of optimization in telecommunications. Springer, New YorkzbMATHGoogle Scholar
  87. 87.
    Mohemmed AW, Sahoo NC (2007) Efficient computation of shortest paths in networks using particle swarm optimization and noising metaheuristics. Discrete Dyn Nat Soc.  https://doi.org/10.1155/2007/27383 MathSciNetzbMATHGoogle Scholar
  88. 88.
    Ali MKM, Kamoun F (1993) Neural networks for shortest path computation and routing in computer networks. IEEE Trans Neural Netw 4(6):941–954Google Scholar
  89. 89.
    Kuri J, Puech N, Gagnaire M, Dotaro E (2002) Routing foreseeable lightpath demands using a tabu search meta-heuristic. In: Global telecommunications conference, 2002. GLOBECOM ’02. IEEE, vol 3, pp 2803–2807Google Scholar
  90. 90.
    Wook AC, Ramakrishna RS (2002) A genetic algorithm for shortest path routing problem and the sizing of populations. IEEE Trans Evolut Comput 6(6):566–579Google Scholar
  91. 91.
    Charon I, Hudry O (1993) The noising method: a new method for combinatorial optimization. Oper Res Lett 14(3):133–137MathSciNetzbMATHGoogle Scholar
  92. 92.
    Shahin G, Falah A, Elias S (2008) Trained particle swarm optimization for ad-hoc collaborative computing networks. In: AISB 2008 convention, symposium on swarm intelligence algorithms and applications. Aberdeen, UKGoogle Scholar
  93. 93.
    Alfawaer Z, Hua G, Abdullah M, Mamady I (2007) Power minimization algorithm in wireless ad-hoc networks based on PSO. J Appl Sci 7(17):2523–2526Google Scholar
  94. 94.
    Muqattash A, Krunz M (2003) Power controlled dual channel (PCDC) medium access protocol for wireless ad hoc networks. In: IEEE INFOCOM 2003. Twenty-second annual joint conference of the IEEE computer and communications societies (IEEE Cat. no. 03CH37428), vol 1, pp 470–480Google Scholar
  95. 95.
    Ramanathan R, Rosales-Hain R (2000) Topology control of multihop wireless networks using transmit power adjustment. In: Proceedings IEEE INFOCOM 2000. Conference on computer communications. Nineteenth annual joint conference of the IEEE computer and communications societiesGoogle Scholar
  96. 96.
    Dutta D, Choudhury K (2013) Network anomaly detection using PSO-ANN. Int J Comput Appl 77(2):35–42Google Scholar
  97. 97.
    Shing-Han L, Yu-Cheng K, Zong-Cyuan Z, Ying-Ping C, David CY (2015) A network behavior-based botnet detection mechanism using PSO and k-means. ACM Trans Manag Inf Syst 6(1):3Google Scholar
  98. 98.
    Priyadharshini C, ThamaraiRubini K (2012) PSO based route lifetime prediction algorithm for maximizing network lifetime in MANET. In: Recent trends in information technology (ICRTIT), 2012 international conference on IEEE, pp 270–275Google Scholar
  99. 99.
    Swain RR, Khilar PM (2017) Soft fault diagnosis in wireless sensor networks using PSO based classification. In: Region 10 conference, TENCON 2017 IEEE, pp 2456–2461Google Scholar
  100. 100.
    Li K, Bao J, Lu Z, Qi Q, Wang J (2017) A PSO-based virtual SDN customization for multi-tenant cloud services. In: Proceedings of the 11th international conference on ubiquitous information management and communication ACM, p 91Google Scholar
  101. 101.
    Lakshmanan L, Tomar DC (2014) Optimizing localization route using particle swarm-a genetic approach. Am J Appl Sci 11(3):520Google Scholar
  102. 102.
    Vimalarani C, Subramanian R, Sivanandam SN (2016) An enhanced PSO-based clustering energy optimization algorithm for wireless sensor network. Sci World J.  https://doi.org/10.1155/2016/8658760 Google Scholar
  103. 103.
    Cheng L, Wang Y, Chengdong W, Han Q (2015) A PSO-based maintenance strategy in wireless sensor networks. Intell Autom Soft Comput 21(1):65–75Google Scholar
  104. 104.
    Ren W, Zhao C (2013) A localization algorithm based on SFLA and PSO for wireless sensor network. Inf Technol J 12(3):502–505Google Scholar
  105. 105.
    Keun-Chang K (2012) An optimization of granular networks based on PSO and two-sided Gaussian contexts. Int J Adv Res Artif Intell 1(9):2012Google Scholar
  106. 106.
    Mahmoud A-A, Shadi A, Yaser J, Shehab Mohammed A, Gupta Brij B (2018) Accelerating 3D medical volume segmentation using GPUs. Multimed Tools Appl 77(4):4939–4958Google Scholar
  107. 107.
    Kaur H, Sharma S (2016) Analysis of metrics: improved hybrid ACO-PSO based routing algorithm for mobile ad-hoc network. In: 2016 Fourth international conference on parallel, distributed and grid computing (PDGC), pp 703–708Google Scholar
  108. 108.
    Aziz IT, Jin H, Abdulqadder IH, Imran RM, Flaih FMF (2017) Enhanced PSO for network reconfiguration under different fault locations in smart grids. In: 2017 International conference on smart technologies for smart nation (SmartTechCon), pp 1250–1254Google Scholar
  109. 109.
    Pluhacek M, Senkerik R, Viktorin A, Kadavy T (2017) Exploring the shortest path in PSO communication network. In: Computational intelligence (SSCI), 2017 IEEE symposium series on IEEE, pp 1–6Google Scholar
  110. 110.
    Hou R, Chang Y, Yang L (2017) Multi-constrained QoS routing based on PSO for named data networking. IET Commun 11(8):1251–1255Google Scholar
  111. 111.
    Salama Hussein F, Reeves Douglas S, Yannis V (1997) Evaluation of multicast routing algorithms for real-time communication on high-speed networks. IEEE J Sel Areas Commun 15(3):332–345Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Mohammed Elbes
    • 1
    Email author
  • Shadi Alzubi
    • 1
  • Tarek Kanan
    • 1
  • Ala Al-Fuqaha
    • 2
  • Bilal Hawashin
    • 3
  1. 1.Department of Computer ScienceAlzaytoonah University of JordanAmmanJordan
  2. 2.Department of Computer ScienceWestern Michigan UniversityKalamazooUSA
  3. 3.Department of Computer Information SystemsAlzaytoonah University of JordanAmmanJordan

Personalised recommendations