Assessing the impacts of nationally appropriate mitigation actions through energy system simulation: a Colombian case

  • Santiago Arango-AramburoEmail author
  • Jason Veysey
  • Juan Esteban Martínez-Jaramillo
  • Luisa Díez-Echavarría
  • Silvia L. Calderón
  • Ana María Loboguerrero
Original Article


All countries, including developing ones, have set climate change and energy security as clear target goals. They have developed programs and policies to reach their energy security, emission reduction, and environmental mitigation goals. Colombia has notably developed programs to promote renewable energies and efficiency. However, there is still a need to quantify the impact that these policies could have in the future. The aim of this paper is to quantify the emissions prevented by the implementation of two proposed Nationally Appropriate Mitigation Actions (NAMAs), for which we built Colombia’s energy system model in order to understand its effects on GHG emissions. The first NAMA replaces old refrigerators that continue using CFC compounds with efficient refrigerators that use HCFC compounds. The second NAMA seeks to secure new energy supplies through renewable sources for areas not connected to the grid. We also created a scenario that integrates both NAMAs to understand their combined effects on GHG emissions. The simulation shows that both NAMAs will allow to prevent the emission of 4.71 million tons of CO2 equivalent by 2040, and that the faster they are implemented, the more GHG emissions will be avoided. The model is a framework available for further research in climate change mitigation and energy efficiency policies.


NAMAs Colombian energy system model Climate policy Energy efficiency Colombian energy policies 



The authors are grateful to the team of CLIMACAP project for their comments and support. We also thank Nicolás Di Sbroiavacca and Andrés Camilo Álvarez for their constructive comments and information.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Arroyo-Cabañas, F. G., Aguillón-Martínez, J. E., Ambríz-García, J. J., & Canizal, G. (2009). Electric energy saving potential by substitution of domestic refrigerators in Mexico. Energy Policy, 37(11), 4737–4742. Scholar
  2. Ates, S. A. (2015). Energy efficiency and CO2 mitigation potential of the Turkish iron and steel industry using the LEAP (long-range energy alternatives planning) system. Energy, 90, 417–428. Scholar
  3. Bhattacharyya, S., & Timilsina, G. R. (2009). Energy demand models for policy formulation a comparative study of energy demand models. In Policy Research working paper; no. WPS 4866; paper is funded by the knowledge for change program (KCP). Washington, DC: World Bank. Scholar
  4. Bruckner, T., Alexeyevich, I., & Mulugetta, Y. (2014). Energy systems, mitigation of climate change. In Contribution of working group III to the fifth assesment report of the intergovernmental panel of climate change (p. 137).Google Scholar
  5. Cadena, A., Delgado, R., Espinosa, M., Marcucci, A., Duque, Á., Espinosa, M., Jiménez, D., Saravia, E., & Serrano, O. (2008). Colombia: Diagnóstico, perspectivas y lineamientos para definir estrategias posibles ante el cambio climático. Universidad de los Andes.Google Scholar
  6. Calm, J. M. (2002). Emissions and environmental impacts from air-conditioning and refrigeration systems. International Journal of Refrigeration, 25(3), 293–305. Scholar
  7. Cheng, C. C. (2010). A new NAMA framework for dispersed energy end-use sectors. Energy Policy, 38(10), 5614–5624. Scholar
  8. Coetzee, K., & Winkler, H. (2014). The international policy context for mitigation actions. Climate and Development, 6(1), 4–11. Scholar
  9. Dedinec, A., Markovska, N., Taseska, V., Duic, N., & Kanevce, G. (2013). Assessment of climate change mitigation potential of the Macedonian transport sector. Energy, 57, 177–187. Scholar
  10. Delgado, R., Álvarez, C., Matajira, C., Cadena, Á., & Calderón, S. (2014). Modelling the socio-economic implications of mitigation actions in Colombia. Bogotá: Retrieved from
  11. Departamento Administrativo Nacional de Estadística [DANE]. (2010). Estimaciones 1985–2005 y proyecciones 2005–2020 de hogares nacional y departamental por área. Departamento Administrativo Nacional de Estadística.Google Scholar
  12. Departamento Administrativo Nacional de Estadística [DANE]. (2014a). Cuentas Anuales de Bienes y Servicios - Colombia Producto Interno Bruto (PIB). Bogotá, DC: Retrieved from
  13. Departamento Administrativo Nacional de Estadística [DANE]. (2014b). Encuesta nacional de calidad de vida (p. 41). Retrieved from
  14. Di Sbroiavacca, N., & Dubrovsky, H. (2011). Metodología y prospectiva a partir de escenarios energéticos (2008–2030) realizados con el modelo LEAP: el caso de Colombia. Santiago de Chile: CEPAL.Google Scholar
  15. Dransfeld, B., Kachi, A., Tänzler, D., Hoch, S., Ruthner, L., & Michaelowa, A. (2015). The practicability of transitioning from CDM to future climate policy instruments. Mülheim - Berlin: Retrieved from
  16. Fedebiocombustibles. (2011). Mitos y Realidades de los Biocombustibles (pp. 1–26). Bogotá.Google Scholar
  17. Giraldo, D., Arango, S., & Martínez, J. E. (2014). Efectos de los Biocombustibles en la Seguridad Alimentaria en Colombia: Una Aproximación Sistémica. Revista Facultad Nacional De Agronomía - Medellín, 67(2), 7375–7385.CrossRefGoogle Scholar
  18. Gobierno de Colombia. (2015). Intended nationally determined contribution (iNDC). In Unofficial translation English Retrieved from Documents/Colombia/1/Colombia iNDC Unofficial translation Eng.pdf.Google Scholar
  19. Halsnæs, K., & Garg, A. (2011). Assessing the role of energy in development and climate policies—conceptual approach and key indicators. World Development, 39(6), 987–1001. Scholar
  20. IPCC. (2007). Climate change 2007 synthesis report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri, R.K and Reisinger, A. (eds.)]. Geneva: Switzerland.Google Scholar
  21. Kadian, R., Dahiya, R. P., & Garg, H. P. (2007). Energy-related emissions and mitigation opportunities from the household sector in Delhi. Energy Policy, 35(12), 6195–6211. Scholar
  22. Kim, H. C., Keoleian, G. A., & Horie, Y. A. (2006). Optimal household refrigerator replacement policy for life cycle energy, greenhouse gas emissions, and cost. Energy Policy, 34(15), 2310–2323. Scholar
  23. LEDS Global Partnership. (2014). Case studies and examples of LEDS. Retrieved from Scholar
  24. Lu, W. (2006). Potential energy savings and environmental impact by implementing energy efficiency standard for household refrigerators in China. Energy Policy, 34(13), 1583–1589. Scholar
  25. Ministerio de Ambiente y Desarrollo Sostenible [MADS] (2012a). Construcción Colectiva de la Estrategia Nacional REDD+. Bogotá D.C., Colombia. ISBN: 978-958-8491-69-1.Google Scholar
  26. Ministerio de Ambiente y Desarrollo Sostenible [MADS] (2012b). Estrategia Colombiana de Desarrollo Bajo en Carbono. Bogotá D.C., Colombia. Retrieved from
  27. Ministerio de Ambiente y Desarrollo Sostenible [MADS] (2016). Contribución Prevista y Determinada a Nivel Nacional iNDC. Bogotá D.C. Retrieved from Google Scholar
  28. Ministerio de Ambiente y Desarrollo Sostenible [MADS] (2017a). Con la aprobación de la NAMA para el sector de refrigeración doméstica, Colombia recibe 9 millones de euros. Retrieved January 30, 2018, from
  29. Ministerio de Ambiente y Desarrollo Sostenible [MADS] (2017b). Listado de NAMAs en curso. Retrieved from Google Scholar
  30. Ministerio de Minas y Energía. (2009). Consultoría para la recopilación de información, definición de lineamientos y prioridades como apoyo a la formulación del PROURE, 80 Retrieved from
  31. Ministerio de Minas y Energía. (2010). PROGRAMA DE USO RACIONAL Y EFICIENTE DE ENERGÍA Y FUENTES NO CONVENCIONALES – PROURE (p. 159). Retrieved from
  32. Ministerio de Transporte [MINTRANSPORTE]. (2011). Diagnóstico del Transporte 2011. Cifras Correspondientes al año 2010 y anteriores. Retrieved from
  33. Mundaca, L. (2013). Climate change and energy policy in Chile: Up in smoke? Energy policy, 52, 235–248. Scholar
  34. Myhre, G., & Shindell, D. (2013). Anthropogenic and natural radiative forcing. In The physical science basis (p. 82). Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.Google Scholar
  35. Ovalle, K., Espinosa, M., Henao, de la Ossa, M., Ortiz, E., & Valenzuela, M. Zambrano, M. (2013). Productos analíticos sectoriales para apoyar la toma de decisiones sobre acciones de mitigación a nivel sectorial. Retrieved from
  36. Ozone Secretariat United Nations Environment Programme. (1999). The Montreal protocol on substances that deplete the ozone layer (p. 54) Retrieved from Scholar
  37. Pinto, F. (2004). Energías renovables y desarrollo sostenible en zonas rurales de Colombia. El caso de la vereda Carrizal en Sutamarchán. Cuadernos de Desarrollo Rural, 1(2), 103–132 Retrieved from Scholar
  38. Postic, S. (2015). Long-term energy prospective modeling for South America – application to international climate negotiations. l’École nationale supérieure des mines de Paris et La Universidad de Chile. Retrieved from Google Scholar
  39. Postic, S., Selosse, S., & Mazi, N. (2016). Energy sector contribution to regional climate action: the case of Latin America (No. hal-01290055). Retrieved from Google Scholar
  40. Rodriguez, H. (2009). Caracterización del consumo de energía final en los sectores terciario, grandes establecimientos comerciales, centros comerciales. Bogota: Asprea.Google Scholar
  41. Rüdenauer, I., & Gensch, C. O. (2006). Accelerated replacement of refrigerators and freezers–does it make sense?. Proceedings of EEDAL, 6.Google Scholar
  42. Schipper, L., Marie-Lilliu, C., & Gorham, R. (2000). Flexing the link between transport and greenhouse gas emissions: a path for the World Bank. Paris: International Energy Agency Retrieved from Scholar
  43. Sharif, M. N., & Kabir, C. (1976). A generalized model for forecasting technological substitution. Technological Forecasting and Social Change, 364, 353–364.CrossRefGoogle Scholar
  44. Stavro, X. (2007). Implementación del Protocolo de Montreal en Colombia. Producción + Limpia, 2(1), 91–105 Retrieved from Scholar
  45. Stockholm Environment Institute. (2014). An introduction to LEAP. Retrieved from Scholar
  46. Suganthi, L., & Samuel, A. A. (2012). Energy models for demand forecasting—A review. Renewable and sustainable energy reviews, 16(2), 1223–1240. Scholar
  47. UN - Energy. (2014). Background note - energy: a brief discussion on goals, targets, and indicators. Retrieved from Note on Energy Goals, Targets, and Indicators (Update 28 May 2014).pdf.
  48. UNEP - United Nations Environment Programme. (2016). The Kigali amendment to the Montreal protocol: HFC phase-down. Retrieved from Google Scholar
  49. UNFCCC. (2008). Report of the conference of the parties on its thirteenth session. In Part two: action taken by the conference of the parties at its thirteenth session. Bali: Retrieved from
  50. UNFCCC. (2010). Appendix II - nationally appropriate mitigation actions of developing country parties. Retrieved from Google Scholar
  51. UNFCCC. (2011). Report of the conference of the parties on its sixteenth session. In Part two: action taken by the conference of the parties at its sixteenth session. Cancun: Retrieved from
  52. Unidad de Planeación Minero Energética [UPME] (2006). Caracterización energética de los sectores residencial, comercial y terciario [WWW Document]. Retrieved from Accessed 2017 Jun 25.
  53. Unidad de Planeación Minero Energética [UPME] (2010). Proyección de Demanda de Energía en Colombia. Retrieved from Scholar
  54. Unidad de Planeación Minero Energética [UPME] (2012a). Acciones y Retos para Energización de las ZNI en el País. Retrieved from Scholar
  55. Unidad de Planeación Minero Energética [UPME] (2012b). Plan de Expansión de Referencia Generación – Transmisión 2012–2025. Ministerio de Minas y Energía. Retrieved from
  56. Unidad de Planeación Minero Energética [UPME]. (2013a). Cadena del petróleo 2013. Retrieved from
  57. Unidad de Planeación Minero Energética [UPME] (2013b). Plan de Abastecimiento de Gas Natural Documento de Trabajo. Versión diciembre de 2013. Retrieved from
  58. Unidad de Planeación Minero Energética [UPME]. (2014). Balance Minero Energético – Energía Primaria 2000-2010. Retrieved from
  59. Unidad de Planeación Minero Energética [UPME] (2015). Manual Calculadora Fecoc 2015. Retrieved from Google Scholar
  60. Unidad Técnica de Ozono - UTO. (2005). Buenas prácticas en refrigeración, recuperación y reciclaje de refrigerantes. Ministerio de Ambiente, Vivienda Y Desarrollo Territorial. Retrieved from Scholar
  61. Unidad Técnica de Ozono - UTO. (2009). Manejo integral de refrigerantes (p. 59).Google Scholar
  62. United States Environmental Protection Agency. (2008). Climate leaders greenhouse gas inventory protocol core module guidance: direct HFC and PFC emissions from use of refrigeration and air conditioning equipment. Retrieved from Google Scholar
  63. United States Environmental Protection Agency. (2012). Montreal protocol: frequently asked questions and answers. Retrieved from Google Scholar
  64. Urban, F., Benders, R. M. J., & Moll, H. C. (2007). Modelling energy systems for developing countries. Energy Policy, 35(6), 3473–3482. Scholar
  65. Wang-Helmreich, H., Sterk, W., Wehnert, T., & Arens, C. (2011). Current developments in pilot nationally appropriate mitigation actions of developing countries (NAMAs).Google Scholar
  66. XM - Filial de ISA. (2012). Informe de operación del SIN y administración del mercado 2012 (p. 202) Retrieved from Scholar
  67. XM - Filial de ISA. (2014). Opesin. Informe sobre la operación del SIN. Retrieved from Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Decision Sciences Group, Faculty of MinesUniversidad Nacional de ColombiaMedellínColombia
  2. 2.Stockholm Environment InstituteSomervilleUSA
  3. 3.Institución Universitaria Politécnico GrancolombianoBogotáColombia
  4. 4.Ciencias Administrativas, Instituto Tecnológico MetropolitanoMedellínColombia
  5. 5.Deputy Director of Environmental Sustainable DevelopmentNational Planning Department DNPBogotaColombia
  6. 6.CGIAR Research Program on Climate Change, Agriculture and Food Security CCAFSPalmiraColombia

Personalised recommendations