Environmental impact assessment of Swiss residential archetypes: a comparison of construction and mobility scenarios

  • Judith Drouilles
  • Sergi Aguacil
  • Endrit HoxhaEmail author
  • Thomas Jusselme
  • Sophie Lufkin
  • Emmanuel Rey
Original Article


Environmental performance assessment of the built environment tends to focus mostly on operational final energy consumption of buildings located within a specific context. Such a limited scope prevents broader usability of findings in practice. In Switzerland, the ‘2000-W society’ vision provides a theoretical framework towards energy transition. Intermediate targets for 2050 relate to an extensive assessment incorporating environmental impacts of construction materials and use of a building, and of induced mobility of its occupants. Accordingly, it becomes crucial to gather information about the current building stock performance and its transition potential. The paper aims at contributing to the sustainability transition debate by providing a comparative assessment of retrofitted and new residential buildings representative of the Swiss building stock. A direct output could constitute in establishing a reliable reference dataset to support practitioners’ or lawmakers’ future decisions. The novelty of the study relies on two aspects: (1) on adopting an interdisciplinary approach to propose an overview of the current status and transition potential of the built environment, and (2) on building a methodology able to extrapolate results for large-scale studies of neighbourhoods or larger built areas. Based on the definition of four building archetypes, this study assesses four scenarios decomposed into four to six variants. The scenarios consist in varying the building energy-performance, while the variants implement different locations—among urban, peripheral and rural areas—and different passive or active strategies. Results are expressed in terms of non-renewable primary energy consumption and global warming potential. They highlight in particular the performances of renovation projects that can decrease the impacts of current building stock by 75 to 85%, the effect of high-energy performance on embodied impacts, the high-level of performance of multi-family houses with 37% lower impacts compared to those of single-family houses and the significant impact of mobility (around 50%).


Residential building archetypes Life-cycle assessment Operational impacts Embodied impacts Daily mobility Non-renewable primary energy 



Energy reference area


Best practice in construction


Coefficient of performance


Common practice in construction


Domestic hot water


Current status


Federal statistical office


Global warming potential


Heating, ventilation and air-conditioning


Multi-family house


Multi-family house–new


Multi-family house–retrofit


Non-renewable primary energy


Renewable energy


Scenario 0, using Swiss regulation as reference (SIA norms)


Scenario 1, using MINERGIE® requirements as a reference


Scenario 2, using MINERGIE-P® requirements as a reference


Scenario 3, using MINERGIE-A® requirements as a reference


Single-family house


Single-family house–new


Single-family house–retrofit


Federal office for energy


Swiss society of engineers and architects


Photovoltaic power for standard conditions test



This article presents the results of the LOW CARBON HOUSING research project, supported by the Smart living Lab, a research and development centre for the built environment of the future whose ambition is to bridge the gap between research and industry. This study was also conducted in the framework of the LIVING PERIPHERIES research project, supported by the Swiss National Science Foundation (SNSF) (Project n°100013_152586/1), and the ACTIVE INTERFACES interdisciplinary research project, part of the National Research Programme "Energy Turnaround" (NRP 70) of the SNSF. Further information on the National Research Programme can be found at The authors also acknowledge the participation of Angela Clua Longas from the Laboratory of architecture and sustainable technologies (LAST) of the Ecole Polytechnique Fédérale de Lausanne (EPFL) for providing information and data about the new multi-family house archetype.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

12053_2019_9811_MOESM1_ESM.xlsx (188 kb)
ESM 1 (XLSX 188 kb)


  1. Aguacil, S. (2019). Architectural design strategies for building-integrated photovoltaics in residential building renovation processes. (Doctoral dissertation). EPFL, Lausanne.
  2. Aguacil, S., Lufkin, S., Rey, E., & Cuchi, A. (2017a). Application of the cost-optimal methodology to urban renewal projects at the territorial scale based on statistical data—A case study in Spain. Energy and Buildings, 144, 42–60. Scholar
  3. Aguacil, S., Lufkin, S., Rey, E. (2017b). Influence of energy-use scenarios in life-cycle analysis of renovation projects with building-integrated photovoltaics – Investigation through two case studies in Neuchâtel (Switzerland). Proceedings of the International Conference for Sustainable Design of the Built Environment 2017, London, UK, 1101–1112.Google Scholar
  4. Beyeler, M. (2014). Métamorphouse: transformer sa maison au fil de la vie. Lausanne: Presses Polytechniques et Universitaires Romandes.Google Scholar
  5. Cabeza, L. F., Rincon, L., Vilarino, V., Perez, G., & Castella, A. (2014). Life cycle assessment (LCA) and life-cycle energy analysis (LCEA) of buildings and the building sector: a review. Renewable and Sustainable Energy Reviews, 29, 394–416.CrossRefGoogle Scholar
  6. Citherlet, S., & Defaux, T. (2007). Energy and environmental comparison of three variants of a family house during its whole life span. Building and Environment, 42(2), 591–598. Scholar
  7. DesignBuilder Software v.5 (2018). DesignBuilder software ltd. UK. Accessed 10 Oct 2018.
  8. Desjardins, X., & Mettetal, L. (2012). L’habiter périurbain face à l’enjeu énergétique. Flux, 2012(3), 46–57.CrossRefGoogle Scholar
  9. Drouilles, J., Rey, E. (2018). L’avenir des quartiers résidentiels périurbains dans le contexte helvétique, in. Léger J.-M., Mariolle B. Densifier dédensifier, Penser les campagnes urbaines, Parenthèses, Marseille.Google Scholar
  10. Drouilles, J., Lufkin, S., & Rey, E. (2017). Energy transition potential in peri-urban dwellings: Assessment of theoretical scenarios in the Swiss context. Energy and Buildings, 148, 379–390. Scholar
  11. Eames, M., Dixon, T., May, T., & Hunt, M. (2013). City futures: Exploring urban retrofit and sustainable transitions. Building Research & Information, 41, 504–516. Scholar
  12. EN 15804-2012. EN 15804–2012 sustainability of construction works, environmental product declarations, Core rules for the product category of construction products. CSN EN Standard. Accessed 17 Oct 2017.
  13. EN 15978–2012. EN 15804–2012 Sustainability of construction works - Assessment of environmental performance of buildings - Calculation method. CSN EN Standard. Accessed 17 Oct 2017.
  14. EnDK, C. des directeurs cantonaux de l’énergie (2014). Modèle de prescriptions énergétiques des cantons (MoPEC).Google Scholar
  15. Fawcett, T. (2014). Exploring the time dimension of low carbon retrofit: owner-occupied housing. Building Research & Information, 42, 477–488. Scholar
  16. FSO. (2017a). Statistiques 2015 des bâtiments et logements. Accessed 27 July 2017.
  17. FSO. (2017b). Energy field. Federal Statistical Office. Accessed 11 Oct 2017.
  18. FSO, ARE. (2012). La mobilité en Suisse. Résultats du microrecensement mobilité et transports 2010 (No. 841–1000). FSO (Federalstatistical office), Neuchâtel.Google Scholar
  19. Gustavsson, L., & Joelsson, A. (2010). Life cycle primary energy analysis of residential buildings. Energy and Buildings, 42, 210–220. Scholar
  20. HEIA (Ed.) (2016). Approche globale pour l’enveloppe du bâtiment : Rénovation énergétique. Haute Ecole d’Ingénierie et d’Architecture (HEIA) Fribourg, Fribourg.Google Scholar
  21. Hall, M., Geissler, A., & Burger, B. (2014). Two years of experience with a net zero energy balance – analysis of the Swiss MINERGIE-A® standard. Energy Procedia, 48, 1282–1291. Scholar
  22. Heeren, N., Jakob, M., Martius, G., Gross, N., & Wallbaum, H. (2013). A component-based bottom-up building stock model for comprehensive environmental impact assessment and target control. Renewable and Sustainable Energy Reviews, 20, 45–56.CrossRefGoogle Scholar
  23. Heinonen, J., Jalas, M., Juntunen, J. K., Ala-Mantila, S., & Junnila, S. (2013a). Situated lifestyles: II. The impacts of urban density, housing type and motorization on the greenhouse gas emissions of the middle-income consumers in Finland. Environmental Research Letters, 8, 035050. Scholar
  24. Heinonen, J., Jalas, M., Juntunen, J. K., Ala-Mantila, S., & Junnila, S. (2013b). Situated lifestyles: I. How lifestyles change along with the level of urbanization and what the greenhouse gas implications are—a study of Finland. Environmental Research Letters, 8, 025003. Scholar
  25. Holden, E., & Norland, I. T. (2005). Three challenges for the compact city as a sustainable urban form: household consumption of energy and transport in eight residential areas in the Greater Oslo Region. Urban Studies, 42, 2145–2166. Scholar
  26. Hoxha, E. (2015). Amélioration de la fiabilité des évaluations environnementales des bâtiments. (Doctoral dissertation). Université Paris-Est, France.Google Scholar
  27. Hoxha, E., Jusselme, T., Brambilla, A., Cozza, S., Andersen, M., Rey, E. (2016a). Impact targets as guidelines towards low carbon buildings: a preliminary concept. PLEA 2016 - Cities, Buildings, People: Towards regenerative environments, Proceedings of the 32nd PLEA International conference, Los Angeles, 938–945.Google Scholar
  28. Hoxha, E., Jusselme, T., Andersen, M., & Rey, E. (2016b). Introduction of a dynamic interpretation of building LCA results: The case of the smart living (lab) building in Fribourg, Switzerland. Expanding Boundaries.
  29. IEE. (2016). TABULA WebTool. TABULA – Typology Approach for Building Stock Energy Assessment. Accessed 13 Oct 2017.
  30. John, V. (2012). Derivation of reliable simplification strategies for the comparative LCA of individual and “typical” newly built Swiss apartment buildings. (Doctoral dissertation). ETH Zurich, Switzerland.
  31. Jones, P., Lannon, S., & Patterson, J. (2013). Retrofitting existing housing: How far, how much? Building Research & Information, 41, 532–550. Scholar
  32. Jusselme, T., Brambilla, A., Hoxha, E., Jiang, Y., Vuarnoz, D., Cozza S. (2015). Building 2050-State-of-the-arts and preliminary guidelines. Swiss Federal Institute of Technology Lausanne. EPFL-REPORT-214871. Switzerland.Google Scholar
  33. KBOB. (2016). Liste des écobilans dans la construction 2009/1 (v. 2014). Accessed 15 June 2017.
  34. Kunič, R. (2017). Carbon footprint of thermal insulation materials in building envelopes. Energy Efficiency, 10(6), 1511–1528. Scholar
  35. Lasvaux, S., Lebert, A., Achim, F., Grannec, F., Hoxha, E., Nibel, S., Schiopu, N., & Chevalier, J. (2017). Towards guidance values for the environmental performance of buildings: Application to the statistical analysis of 40 low-energy single-family houses’ LCA in France. The International Journal of Life Cycle Assessment, 22, 657–674. Scholar
  36. Loga, T., Stein, B., & Diefenbach, N. (2016). TABULA building typologies in 20 European countries—Making energy-related features of residential building stocks comparable. Energy and Buildings, 132, 4–12. Scholar
  37. Meteonorm Software v7.2.2. (2017). Meteotest.Switzerland. Accessed 10 Oct 2017.
  38. Minergie. (2017). Liste des bâtiments. MINERGIE Schweiz. Accessed 24 July 2017.
  39. Munafò, S. (2016). La ville compacte remise en cause ?: formes urbaines et mobilités de loisirs. Neuchâtel: Editions Alphil Presses universitaires suisses.CrossRefGoogle Scholar
  40. Nessi, H. (2012). Influences du contexte urbain et du rapport au cadre de vie sur la mobilité de loisir en Ile-de-France et à Rome. Paris: Université Paris-Est.Google Scholar
  41. Novatlantis, SIA, Swissenergy (2011). Smarter Living: moving forward to a sustainable energy future with the 2000 Watt society (No. 805.200.e). Bern.Google Scholar
  42. Oliveira Panão, M. J. N., Rebelo, M. P., & Camelo, S. M. L. (2013). How low should be the energy required by a nearly zero-energy building? The load/generation energy balance of Mediterranean housing. Energy and Buildings, 61, 161–171. Scholar
  43. Ottelin, J., Heinonen, J., & Junnila, S. (2015). New energy efficient housing has reduced carbon footprints in outer but not in inner urban areas. Environmental Science & Technology, 49, 9574–9583. Scholar
  44. Paganin, G., Angelotti, A., Ducoli, C., Lavagna, M., Talamo, C., & Luccietto, S. (2017). Energy performance of an exhibition hall in a life cycle perspective: Embodied energy, operational energy and retrofit strategies. Energy Efficiency, 10(6), 1343–1364. Scholar
  45. Ratti, C., Baker, N., & Steemers, K. (2005). Energy consumption and urban texture. Energy and Buildings, 37, 762–776. Scholar
  46. Remund, J., Müller, S., Schilter, C., & Beat, R. (2010). The use of Meteonormwheather generator for climate change studies. Bern: EMS Annual Meeting Abstracts.Google Scholar
  47. Rey, E., Lufkin, S., Renaud, P., & Perret, L. (2013). The influence of centrality on the global energy consumption in Swiss neighborhoods. Energy and Buildings, 60, 75–82. Scholar
  48. Rickwood, P., Glazebrook, G., & Searle, G. (2008). Urban structure and energy—a review. Urban Policy and Research, 26, 57–81. Scholar
  49. Riera Pérez, M. G., & Rey, E. (2013). A multi-criteria approach to compare urban renewal scenarios for an existing neighborhood. Case study in Lausanne (Switzerland). Building and Environment, 65, 58–70. Scholar
  50. Rossi, B., Marique, A.-F., & Reiter, S. (2012). Life-cycle assessment of residential buildings in three different European locations, case study. Building and Environment, 51, 402–407. Scholar
  51. Ruiz, R., Bertagnolio, S., & Lemort, V. (2012). Global sensitivity analysis applied to total energy use in buildings. In International High Performance Buildings Conference. USA: Purdue. Scholar
  52. Sartori, I., & Hestnes, A. G. (2007). Energy use in the life cycle of conventional and low-energy buildings: a review article. Energy and Buildings, 39, 249–257. Scholar
  53. Scarinci, R., Rast, F., & Bierlaire, M. (2017). Needed reduction in mobility energy consumption to meet the goal of a 2000-watt society. Transportation Research Part A: Policy and Practice, 101, 133–148. Scholar
  54. SFOE. (2015a). Energy Strategy 2050.Société à 2000 watts. Accessed 15 Nov 2017.
  55. SFOE. (2015b). Isolation thermique et technique du bâtiment - combien et dans quels cas. Bern: Swiss Federal Office of Energy SFOE.Google Scholar
  56. SFOE. (2017). Swiss Federal Office of Energy SFOE. Bern. Accessed 10 Oct 2017.
  57. SIA. (2010). L’énergie grise des bâtiments, Cahier technique SIA-2032. Zurich: Swiss society of engineers and architects SIA.Google Scholar
  58. SIA. (2015a). Données d’utilisation des locaux pour l’énergie et les installations du bâtiment - Cahier technique SIA-2024. Zürich: Swiss society of engineers and architects SIA.Google Scholar
  59. SIA. (2015b). Base pour les calculs énergétiques des bâtiments (Norme SIA-380). Zurich: Swiss society of engineers and architects SIA.Google Scholar
  60. SIA. (2016a). Mobilité : consommation énergétique des bâtiments en fonction de leur localisation, Cahier technique SIA-2039. Zurich: Swiss society of engineers and architects SIA.Google Scholar
  61. SIA. (2016b). Besoin de chaleur pour le chauffage. Norme SIA 380/1. Swiss society of engineers and architects SIA, Zurich.Google Scholar
  62. SIA. (2017). La voie SIA vers l’efficacité énergétique - Cahier technique SIA-2040. Swiss society of engineers and architects SIA, Zürich.Google Scholar
  63. Slavkovič, K., & Radivojevič, A. (2015). Evaluation of energy embodied in the external wall of single-family buildings in the process of energy performance optimisation. Energy Efficiency, 8(2), 239–253. Scholar
  64. Stephan, A., Crawford, R. H., & de Myttenaere, K. (2012). Towards a comprehensive life-cycle energy analysis framework for residential buildings. Energy and Buildings, 55, 592–600. Scholar
  65. Steskens, P., Vanhellemont, Y., Roels, S., & Van Den Bossche, N. (2015). A decision-making tool for the energy efficient refurbishment of residential buildings. EnergyProcedia, 78, 997–1002. Scholar
  66. Suisse Energie. (2017). La Suisse, sur la voie de la Société à 2000 watts: bilan des énergies primaires en Suisse de 1980 à 2015. Société à 2000 watts. Accessed 19 Oct 2017.
  67. Swan, L. G., & Ugursal, V. I. (2009). Modelling of end-use energy consumption in the residential sector: A review of modelling techniques. Renewable and Sustainable Energy Reviews, 13, 1819–1835. Scholar
  68. Thiel, C., Nijs, W., Simoes, S., Schmidt, J., van Zyl, A., & Schmid, E. (2016). The impact of the EU car CO2 regulation on the energy system and the role of electro-mobility to achieve transport decarbonisation. Energy Policy, 96, 153–166. Scholar
  69. Wastiels, L., Janssen, A., & Decuypere, R. (2016). Demolition versus deep renovation of residential buildings: Case-study with environmental and financial evaluation of different construction scenarios. Expanding Boundaries.
  70. Xu, P., Shen, Y., Chen, L., Mao, J., Chang, E., & Ji, Y. (2016). Assessment of energy-saving technologies retrofitted to existing public buildings in China. Energy Efficiency, 9(1), 67–94. Scholar
  71. Zachariadis, T. (2006). On the baseline evolution of automobile fuel economy in Europe. Energy Policy, 34, 1773–1785. Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Laboratory of Architecture and Sustainable Technologies (LAST), School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), EPFL–ENAC–IA–LASTLausanneSwitzerland
  2. 2.Building 2050 Research Group, Ecole Polytechnique Fédérale de Lausanne (EPFL), EPFL–ANTEN–ANTFR–BUILDFribourgSwitzerland

Personalised recommendations