Advertisement

Energy Efficiency

, Volume 11, Issue 8, pp 2181–2201 | Cite as

Electric, plug-in hybrid, hybrid, or conventional? Polish consumers’ preferences for electric vehicles

  • Milan ŠčasnýEmail author
  • Iva Zvěřinová
  • Mikołaj Czajkowski
Original Article
  • 295 Downloads
Part of the following topical collections:
  1. Energy and Climate Economic Modelling

Abstract

Poland aims at stimulating the market to reach a target of 50,000 plug-in and battery electric vehicles by 2020. However, as in other Eastern European countries, the market penetration stays very low. In Poland, there were only 475 battery electric vehicles and 514 plug-in electric vehicles registered in 2017. To identify effective support measures, this paper examines the preferences of Polish consumers for three types of electric vehicles: battery, hybrid, and plug-in hybrid vehicles. We use a discrete choice experiment to estimate the willingness to pay of a representative sample of consumers intending to buy a car in Poland. We find that electric vehicles are significantly less preferred than conventional cars, even under a public programme that would enable slow-mode charging in places where respondents usually park. We quantify the marginal willingness to pay for increasing the driving range, reductions in charging time, the availability of fast-mode charging stations, and the provision of policy incentives. The novelty of the paper lies in presenting a scenario with the slow-mode and availability of several levels of fast-mode charging stations and examination of the extent to which the heterogeneity of consumer preferences is driven by place of residence (urban, suburban, rural), intention to buy a new versus a used car, and the annual mileage. This is also the first discrete choice experiment on electric vehicles conducted in Eastern Europe. To stimulate the electric vehicle market, we recommend a pricing policy that affects the operating costs and other incentives along with an effective up-front price incentive scheme.

Keywords

Battery electric vehicles Hybrid vehicles Discrete choice experiments Willingness to pay Driving range Fast-mode charging infrastructure Recharging time Incentives 

Abbreviations

BEV

Battery electric vehicle, a vehicle set in motion by an electric motor. Powered by electricity, it has a battery which can be recharged from a regular electric socket.

PHEV

Plug-in hybrid vehicle, a vehicle with an internal combustion engine (petrol or diesel) and batteries that can also be charged from a regular electric socket. The car can drive several tens of kilometres solely on electricity. When the batteries are empty, the car will automatically switch to the internal combustion engine.

HEV

Hybrid vehicle, a vehicle with batteries but without a plug. It has both an internal combustion engine and an electric engine. The combination allows the electric motor and batteries to help the conventional engine operate more efficiently, reducing fuel use. Switching between the two engines occurs automatically without the driver’s intervention. The battery is charged from the energy produced by the combustion engine during driving or while braking. A hybrid car drives several kilometres solely on electricity.

EV

Electric vehicle, includes BEV, PHEV, and HEV

CV

Conventional vehicle, drives on an internal combustion engine that can be fuelled by petrol, diesel, or oil derivatives such as LPG.

Notes

Acknowledgments

This research has been supported by the Czech Science Foundation (GA15-23815S; Ščasný), Charles University (PRIMUS/17/HUM/16; Zvěřinová), and the National Science Centre of Poland (Sonata 10, 2015/19/D/HS4/01972; Czajkowski). Data collection and preliminary analysis were financed by the Polish NCBiR (Centre for Research and Development), within the framework of the project “Development of an Evaluation Framework for the Introduction of Electromobility – DEFINE” provided to the Center for Social and Economic Research (CASE Poland). This article is a part of research presented at the ECOCEP Conference on Economic Modelling for Climate-Energy Policy (FP7-PEOPLE-2013-IRSES, No. 609642) and secondments funded by the H2020-MSCA-RISE under GA 681228. This support is acknowledged. The views expressed here are those of the authors and not necessarily those of our institutions. Responsibility for any errors remains with the authors.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

12053_2018_9754_MOESM1_ESM.pdf (716 kb)
ESM 1 (PDF 716 kb)
12053_2018_9754_MOESM2_ESM.pdf (1 mb)
ESM 2 (PDF 1057 kb)

References

  1. Aasness, M. A., & Odeck, J. (2015). The increase of electric vehicle usage in Norway—incentives and adverse effects. European Transport Research Review, 7(4). Google Scholar
  2. Achtnicht, M. (2012). German car buyers’ willingness to pay to reduce CO2 emissions. Climatic Change, 113(3–4), 679–697.CrossRefGoogle Scholar
  3. Axsen, J., Mountain, D. C., & Jaccard, M. (2009). Combining stated and revealed choice research to simulate the neighbor effect: the case of hybrid electric vehicles. Resource and Energy Economics, 31(3), 221–238.CrossRefGoogle Scholar
  4. Axsen, J., Bailey, J., & Castro, M. A. (2015). Preference and lifestyle heterogeneity among potential plug-in electric vehicle buyers. Energy Economics, 50, 190–201.CrossRefGoogle Scholar
  5. Bahamonde-Birke, F. J., & Hanappi, T. (2016). The potential of electromobility in Austria: evidence from hybrid choice models under the presence of unreported information. Transportation Research Part A: Policy and Practice, 83, 30–41.Google Scholar
  6. Bateman, I. J., Carson, R. T., Day, B., & Hanemann, W. M. (2004). Economic valuation with stated preference techniques: a manual. Cheltenham, UK: Edward Elgar ISBN: 1840649194.Google Scholar
  7. Bjerkan, K. Y., Nørbech, T. E., & Nordtømme, M. E. (2016). Incentives for promoting battery electric vehicle (BEV) adoption in Norway. Transportation Research Part D: Transport and Environment, 43, 169–180.CrossRefGoogle Scholar
  8. Bliemer, M. C. J., Rose, J. M., & Hess, S. (2008). Approximation of Bayesian efficiency in experimental choice designs. Journal of Choice Modelling, 1(1), 98–127.CrossRefGoogle Scholar
  9. Brownstone, D., & Train, K. (1998). Forecasting new product penetration with flexible substitution patterns. Journal of Econometrics, 89(1–2), 109–129.zbMATHCrossRefGoogle Scholar
  10. Bunch, D. S., Bradley, M., Golob, T. F., Kitamura, R., & Occhiuzzo, G. P. (1993). Demand for clean-fuel vehicles in California: a discrete-choice stated preference pilot project. Transportation Research Part A: Policy and Practice, 27(3), 237–253.CrossRefGoogle Scholar
  11. Carson, R., & Czajkowski, M. (2013). A new baseline model for estimating willingness to pay from discrete choice models. Sydney: Presented at International Choice Modelling Conference.Google Scholar
  12. Carson, R., & Czajkowski, M. (2014). The discrete choice experiment approach to environmental contingent valuation. In Handbook of choice modelling (p. 202–235).Google Scholar
  13. Caulfield, B., Farrell, S., & McMahon, B. (2010). Examining individuals preferences for hybrid electric and alternatively fuelled vehicles. Transport Policy, 17(6), 381–387.CrossRefGoogle Scholar
  14. Champ, P. A., Boyle, K. J., & Brown, T. C. (ed). (2003). Collecting Survey Data for Nonmarket Valuation. A primer on nonmarket valuation (Vol. 3). Dordrecht: Springer NetherlandsGoogle Scholar
  15. Chorus, C. G., Koetse, M. J., & Hoen, A. (2013). Consumer preferences for alternative fuel vehicles: comparing a utility maximization and a regret minimization model. Energy Policy, 61, 901–908.CrossRefGoogle Scholar
  16. Czajkowski, M., & Budziński, W. (2017). Simulation error in maximum likelihood estimation of discrete choice models protection regulation (GDPR). University of Warsaw Faculty of Economic Sciences Working Papers, 1–47.Google Scholar
  17. Dagsvik, J. K., Wennemo, T., Wetterwald, D. G., & Aaberge, R. (2002). Potential demand for alternative fuel vehicles. Transportation Research Part B: Methodological, 36(4), 361–384.CrossRefGoogle Scholar
  18. van der Vooren, A., Alkemade, F., & Hekkert, M. P. (2012). Effective public resource allocation to escape lock-in: the case of infrastructure-dependent vehicle technologies. Environmental Innovation and Societal Transitions, 2, 98–117.CrossRefGoogle Scholar
  19. Dimitropoulos, A., Rietveld, P., & van Ommeren, J. N. (2013). Consumer valuation of changes in driving range: a meta-analysis. Transportation Research Part A: Policy and Practice, 55, 27–45.Google Scholar
  20. EAFO (2017). The European Commission initiative to provide alternative fuels statistics and information (electricity, hydrogen, natural gas, LPG). European Alternative Fuel Observatory. http://www.eafo.eu. Accessed January 2018.
  21. EAFO (2018). The European Commission initiative to provide alternative fuels statistics and information (electricity, hydrogen, natural gas, LPG). European Alternative Fuel Observatory. www.eafo.eu/content/netherlands. Accessed on 10h July 2018.
  22. Earnhart, D. (2001). Combining revealed and stated preference methods to value environmental amenities at residential locations. Land Economics, 77(1), 12–29.CrossRefGoogle Scholar
  23. European Commission (2014a). Directive 2014/94/EU of the European Parliament and of the Council of 22 October 2014 on the deployment of alternative fuels infrastructure. Text with EEA relevance.Google Scholar
  24. European Commission (2014b). Regulation (EU) No 333/2014 of the European Parliament and of the Council of 11 March 2014 amending Regulation (EC) No 443/2009 to define the modalities for reaching the 2020 target to reduce CO2 emissions from new passenger cars.Google Scholar
  25. Egbue, O., & Long, S. (2012). Barriers to widespread adoption of electric vehicles: an analysis of consumer attitudes and perceptions. Energy Policy, 48, 717–729.CrossRefGoogle Scholar
  26. Ewing, G., & Sarigöllü, E. (2000). Assessing consumer preferences for clean-fuel vehicles: a discrete choice experiment. Journal of Public Policy & Marketing, 19, 106–118.CrossRefGoogle Scholar
  27. Ferrini, S., & Scarpa, R. (2007). Designs with a priori information for nonmarket valuation with choice experiments: a Monte Carlo study. Journal of Environmental Economics and Management, 53(3), 342–363.zbMATHCrossRefGoogle Scholar
  28. Figenbaum, E. (2017). Perspectives on Norway’s supercharged electric vehicle policy. Environmental Innovation and Societal Transitions, 25, 14–34.CrossRefGoogle Scholar
  29. Fluchs, S., & Kasperk, G. (2018). The influence of government incentives on electric vehicle adoption: cross-national comparison (pp. 25–29). Gothenburg Sweden: Paper presented at the 5th World Congress of Environmental and Resource Economists.Google Scholar
  30. Freeman, A. M., Herriges, J. A., & Kling, C. L. (2014). The measurement of environmental and resource values: theory and methods (third ed.). Abingdon, Oxon; New York, NY: RFF Press.Google Scholar
  31. Gallagher, K. S., & Muehlegger, E. (2011). Giving green to get green? Incentives and consumer adoption of hybrid vehicle technology. Journal of Environmental Economics and Management, 61(1), 1–15.CrossRefGoogle Scholar
  32. German, R., Pridmore, A., Ahlgren, C., Williamson, T., & Nijland, H. (2018). Vehicle emissions and impacts of taxes and incentives in the evolution of past emissions: report to EEA. Bilthoven: Eionet Report – ETC/ACM 2018/1. European Topic Centre on Air Pollution and Climate Change Mitigation.Google Scholar
  33. Golob, T. F., Torous, J., Bradley, M., Brownstone, D., Crane, S. S., & Bunch, D. S. (1997). Commercial fleet demand for alternative-fuel vehicles in California. Transportation Research Part A: Policy and Practice, 31(3), 219–233.Google Scholar
  34. Hackbarth, A., & Madlener, R. (2013). Consumer preferences for alternative fuel vehicles: a discrete choice analysis. Transportation Research Part D: Transport and Environment, 25, 5–17.CrossRefGoogle Scholar
  35. Hackbarth, A., & Madlener, R. (2016). Willingness-to-pay for alternative fuel vehicle characteristics: a stated choice study for Germany. Transportation Research Part A: Policy and Practice, 85, 89–111.CrossRefGoogle Scholar
  36. Hanley, N., & Czajkowski, M. (2017). Stated preference valuation methods: an evolving tool for understanding choices and informing policy. University of Warsaw Faculty of Economic Sciences Working Papers, 1–43.Google Scholar
  37. Hardman, S., Chandan, A., Tal, G., & Turrentine, T. (2017). The effectiveness of financial purchase incentives for battery electric vehicles—a review of the evidence. Renewable and Sustainable Energy Reviews, 80, 1100–1111.CrossRefGoogle Scholar
  38. Haugneland, P., Bu, C., & Hauge, E. (2016). The Norwegian EV success continues. Montréal, Quebec, Canada: Presented at EVS29 symposium.Google Scholar
  39. Heffner, R.R., Kurani, K.S., & Turrentine, T.S. (2005). Effects of vehicle image in gasoline-hybrid electric vehicles. UC Davis Institute of Transportation Studies, Davis. European Alternative Fuels Observatory (2018). Netherlands. Retrieved from www.eafo.eu/content/netherlands on 10h July 2018.
  40. Helveston, J. P., Liu, Y., Feit, E. M., Fuchs, E., Klampfl, E., & Michalek, J. J. (2015). Will subsidies drive electric vehicle adoption? Measuring consumer preferences in the U.S. and China. Transportation Research Part A: Policy and Practice, 73, 96–112.CrossRefGoogle Scholar
  41. Hess, S., Fowler, M., Adler, T., & Bahreinian, A. (2012). A joint model for vehicle type and fuel type choice: evidence from a cross-nested logit study. Transportation, 39(3), 593–625.CrossRefGoogle Scholar
  42. Hidrue, M. K., Parsons, G. R., Kempton, W., & Gardner, M. P. (2011). Willingness to pay for electric vehicles and their attributes. Resource and Energy Economics, 33(3), 686–705.CrossRefGoogle Scholar
  43. Hoen, A., & Koetse, M. J. (2012). A choice experiment on AFV preferences of private car owners in the Netherlands (vol. 3). PBL working paper.Google Scholar
  44. Hoen, A., & Koetse, M. J. (2014). A choice experiment on alternative fuel vehicle preferences of private car owners in the Netherlands. Transportation Research Part A: Policy and Practice, 61, 199–215.Google Scholar
  45. Jensen, A. F., Cherchi, E., & Mabit, S. L. (2013). On the stability of preferences and attitudes before and after experiencing an electric vehicle. Transportation Research Part D: Transport and Environment, 25, 24–32.CrossRefGoogle Scholar
  46. Kim, J., Rasouli, S., & Timmermans, H. (2014). Expanding scope of hybrid choice models allowing for mixture of social influences and latent attitudes: application to intended purchase of electric cars. Transportation Research Part A: Policy and Practice, 69, 71–85.Google Scholar
  47. Koetse, M. J., & Hoen, A. (2014). Preferences for alternative fuel vehicles of company car drivers. Resource and Energy Economics, 37, 279–301.CrossRefGoogle Scholar
  48. Kurani, K. S., Turrentine, T., & Sperling, D. (1996). Testing electric vehicle demand in ‘hybrid households’ using a reflexive survey. Transportation Research Part D: Transport and Environment, 1(2), 131–150.CrossRefGoogle Scholar
  49. Lebeau, K., Van Mierlo, J., Lebeau, P., Mairesse, O., & Macharis, C. (2012). The market potential for plug-in hybrid and battery electric vehicles in Flanders: a choice-based conjoint analysis. Transportation Research Part D: Transport and Environment, 17(8), 592–597.CrossRefGoogle Scholar
  50. Li, S., Tiong, L., Xing, J. & Zhou, Y. (2017). The market for electric vehicles: indirect network effects and policy design. Journal of the Association of Environmental and Resource Economists, 4(1), 89–133.Google Scholar
  51. Liao, F., Molin, E., & van Wee, B. (2017). Consumer preferences for electric vehicles: a literature review. Transport Reviews, 37(3), 252–275.CrossRefGoogle Scholar
  52. McFadden, D. L. (1974). Conditional logit analysis of qualitative choice behavior. In P. Zarembka (Ed.), Frontiers in econometrics. New York: Academic Press.Google Scholar
  53. Mersky, A. C., Sprei, F., Samaras, C., & Qian, Z. S. (2016). Effectiveness of incentives on electric vehicle adoption in Norway. Transportation Research Part D: Transport and Environment, 46, 56–68.CrossRefGoogle Scholar
  54. Mitchell, N. (2014). The changing landscape of technology and its effect on online survey data collection. Survey Sampling International. https://www.surveysampling.com/site/assets/files/1583/the-changing-landscape-of-technology-and-its-effect-on-online-survey-data-collection.pdf. September 2017.
  55. Phaneuf, D. J., & Requate, T. (2017). A course in environmental economics: theory, policy, and practice. Cambridge, United Kingdom; New York, NY, USA: Cambridge University Press.Google Scholar
  56. Potoglou, D., & Kanaroglou, P. S. (2007). Household demand and willingness to pay for clean vehicles. Transportation Research Part D: Transport and Environment, 12(4), 264–274.Google Scholar
  57. PZPM (2017). Automotive industry report 2017/2018. Polski Zwiazek Przemyslu Motoryzacyjnego. http://www.pzpm.org.pl/en/Automotive-market/Reports/PZPM-Automotive-Industry-Report-2017-2018. September 2017.
  58. Qian, L., & Soopramanien, D. (2011). Heterogeneous consumer preferences for alternative fuel cars in China. Transportation Research Part D: Transport and Environment, 16(8), 607–613.Google Scholar
  59. Rasouli, S., & Timmermans, H. (2016). Influence of social networks on latent choice of electric cars: a mixed logit specification using experimental design data. Networks and Spatial Economics, 16(1), 99–130.MathSciNetCrossRefGoogle Scholar
  60. Revelt, D., & Train, K. (1998). Mixed logit with repeated choices: households’ choices of appliance efficiency level. Review of Economics and Statistics, 80(4), 647–657.CrossRefGoogle Scholar
  61. Rose, J. M., Bliemer, M. C. J., Hensher, D. A., & Collins, A. T. (2008). Designing efficient stated choice experiments in the presence of reference alternatives. Transportation Research Part B: Methodological, 42(4), 395–406.CrossRefGoogle Scholar
  62. Sándor, Z., & Wedel, M. (2001). Designing conjoint choice experiments using managers’ prior beliefs. Journal of Marketing Research, 38(4), 430–444.CrossRefGoogle Scholar
  63. Scarpa, R., & Rose, J. M. (2008). Design efficiency for non-market valuation with choice modelling: how to measure it, what to report and why. Australian Journal of Agricultural and Resource Economics, 52(3), 253–282.CrossRefGoogle Scholar
  64. Scarpa, R., Thiene, M., & Train, K. (2008). Utility in willingness to pay space: a tool to address confounding random scale effects in destination choice to the Alps. American Journal of Agricultural Economics, 90(4), 994–1010.CrossRefGoogle Scholar
  65. Ščasný, M., Zvěřinová, I., & Czajkowski, M. (2015). Report on determinants and barriers of purchase of low carbon vehicles, including WTP estimates for specific attributes of passenger vehicles in Poland. Deliverable 8.1. of project “Development of an Evaluation Framework for the Introduction of Electromobility” (DEFINE) funded by Era-Net Transport Transnational Call Electromobility+.Google Scholar
  66. Train, K., & Weeks, M. (2005). Discrete choice models in preference space and willingness-to-pay space. In R. Scarpa & A. Alberini (Eds.), Applications of simulation methods in environmental and resource economics (Vol. 6, pp. 1–16). Berlin/Heidelberg: Springer-Verlag.CrossRefGoogle Scholar
  67. Valeri, E., & Cherchi, E. (2016). Does habitual behavior affect the choice of alternative fuel vehicles? International Journal of Sustainable Transportation, 10(9), 825–835.CrossRefGoogle Scholar
  68. Valeri, E., & Danielis, R. (2015). Simulating the market penetration of cars with alternative fuel power train technologies in Italy. Transport Policy, 37, 44–56.CrossRefGoogle Scholar
  69. Xing, J., Leard, B., & Li, S. (2018). What does an electric vehicle replace? Paper presented at the 5th World Congress of Environmental and Resource Economists (WCERE), Gothenburg, June 25–29, 2018. Retrieved from https://www.jianweixing.com/research.html on 5 July 2018.
  70. Zhang, X., Wang, K., Hao, Y., Jing-Li, F., & Wei, Y. M. (2013). The impact of government policy on preference for NEVs: the evidence from China. Energy Policy, 61, 382–393.CrossRefGoogle Scholar
  71. Ziegler, A. (2012). Individual characteristics and stated preferences for alternative energy sources and propulsion technologies in vehicles: a discrete choice analysis for Germany. Transportation Research Part A: Policy and Practice, 46(8), 1372–1385.Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Environment CentreCharles UniversityPrague 6Czech Republic
  2. 2.Department of Sociology, Faculty of ArtsCharles UniversityPragueCzech Republic
  3. 3.Faculty of Economic SciencesUniversity of WarsawWarsawPoland

Personalised recommendations