Advertisement

Energy Efficiency

, Volume 12, Issue 4, pp 1027–1039 | Cite as

Exploring the drivers of energy consumption-related CO2 emissions in China: a multiscale analysis

  • Bangzhu ZhuEmail author
  • Shunxin Ye
  • Ping Wang
  • Kaijian He
  • Tao Zhang
  • Rui Xie
  • Yi-Ming Wei
Original Article
  • 94 Downloads

Abstract

The exploration and modeling of the drivers of CO2 emissions can help make effective CO2 emission reduction policies. In this study, we examine the drivers of energy consumption-related CO2 emissions in China during 1978–2014 from a multiscale perspective. Firstly, we use the multivariate empirical mode decomposition model to simultaneously decompose the CO2 emissions and 17 drivers into several groups of intrinsic mode functions and one group of residues at different timescales. Secondly, we employ the stepwise regression analysis to explore and model the key drivers of CO2 emissions at different timescales without multicollinearity. The empirical results show that China’s CO2 emissions have obvious timescales of 6.17 years, 9.25 years, 18.5 years, 37.0 years, and long-term trend. At the short-term timescales, fuel structure and economic structure have significant impacts on CO2 emissions. At the medium-term timescales, urban population and fuel structure are the major contributors to CO2 emissions. At the long-term timescale, only per capita GDP has a positive effect on CO2 emissions. Finally, we propose the policy implications at the short, medium, and long timescales.

Keywords

CO2 emissions Drivers Multivariate empirical mode decomposition Stepwise regression analysis China 

Notes

Funding information

This work is financially supported by the National Natural Science Foundation of China (71771105, 71473180, and 71303174), Guangdong Young Zhujiang Scholar (Yue Jiaoshi [2016]95), Natural Science Foundation for Distinguished Young Talents of Guangdong (2014A030306031), and Guangdong Key Base of Humanities and Social Science—Enterprise Development Research Institute.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Cansino, J. M., Sánchez-Braza, A., & Rodríguez-Arévalo, M. L. (2015). Driving forces of Spain’s CO2 emissions: a LMDI decomposition approach. Renewable & Sustainable Energy Reviews, 48, 749–759.CrossRefGoogle Scholar
  2. Cansino, J. M., Román, R., & Ordóñez, M. (2016). Main drivers of changes in CO2 emissions in the Spanish economy: a structural decomposition analysis. Energy Policy, 89, 150–159.CrossRefGoogle Scholar
  3. China National Bureau of Statistics. (1992–2016). China energy statistical yearbook (1991–2015). Beijing: China Statistics Press.Google Scholar
  4. China National Bureau of Statistics. (2015). China statistical yearbook 2015. Beijing: China Statistics Press.Google Scholar
  5. He, K., Chen, Y., & Tso, G. K. F. (2017). Price forecasting in the precious metal market: A multivariate EMD denoising approach. Resources Policy, 54, 9–24.CrossRefGoogle Scholar
  6. Henriques, S. T., Karol, J., & Borowiecki, K. J. (2017). The drivers of long-run CO2 emissions in Europe, North America and Japan since 1800. Energy Policy, 101, 537–549.CrossRefGoogle Scholar
  7. Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen, N.-C., Tung, C. C., & Liu, H. H. (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London A: mathematical, physical and engineering sciences. The Royal Society, 454(1971), 903–995.MathSciNetCrossRefzbMATHGoogle Scholar
  8. IEA. (2016). CO 2 emissions from fuel combustion (2016). Paris: IEA.Google Scholar
  9. IPCC, 2006. 2006 IPCC guidelines for National Greenhouse Gas Inventories. http://www.ipcc-nggip.iges.or.jp/pub-lic/2006gl/chinese/index.htm.
  10. Islam, M. R., Rashedalmahfuz, M., Ahmad, S., et al. (2012). Multiband prediction model for financial time series with multivariate empirical mode decomposition. Discrete Dynamics in Nature and Society, 3, 87–88.Google Scholar
  11. Li, H. N., Mu, H. L., Zhang, M., et al. (2011). Analysis on influence factors of China’s CO2 emissions based on path STIRPAT model. Energy Policy, 39(11), 6906–6911.CrossRefGoogle Scholar
  12. Li, H., Mu, H., Zhang, M., & Gui, S. (2012). Analysis of regional difference on impact factors of China’s energy—related CO2 emissions. Energy, 39(1), 319–326.CrossRefGoogle Scholar
  13. Lin, B. Q., & Liu, X. Y. (2010). China’s carbon dioxide emissions under the urbanization process: influence factors and abatement policies. Economic Research Journal, 8, 66–78.Google Scholar
  14. Lu, W. B., Qiu, T. T., & Du, L. (2013). A study on influence factors of CO2 emissions under different economic growth stages in China. Economic Research Journal, 04, 106–118.Google Scholar
  15. Mert, A., & Akan, A. (2018). Emotion recognition from EEG signals by using multivariate empirical mode decomposition. Pattern Analysis & Applications, 21(1), 81–89.MathSciNetCrossRefGoogle Scholar
  16. Mutlu, A. Y., & Aviyente, S. (2011). Multivariate empirical mode decomposition for quantifying multivariate phase synchronization. Eurasip Journal on Advances in Signal Processing, 1, 1–13.Google Scholar
  17. National Bureau of Statistics. (2010). China compendium of statistics. Beijing: China Statistics Press.Google Scholar
  18. Park, C., Looney, D., Ur Rehman, N., et al. (2013). Classification of motor imagery BCI using multivariate empirical mode decomposition. IEEE Transactions on Neural Systems & Rehabilitation Engineering, 21(1), 10–22.CrossRefGoogle Scholar
  19. Prieto-Guerrero, A., Espinosa-Paredes, G., & Laguna-Sánchez, G. A. (2015). Stability monitor for boiling water reactors based on the multivariate empirical mode decomposition. Annals of Nuclear Energy, 85, 453–460.CrossRefGoogle Scholar
  20. Qi, T., Weng, Y., Zhang, X., & He, J. (2016). An analysis of the driving factors of energy-related CO2 emission reduction in China from 2005 to 2013. Energy Economics, 60, 15–22.CrossRefGoogle Scholar
  21. Rafiq, S., Salim, R., & Nielsen, I. (2016). Urbanization, openness, emissions, and energy intensity: a study of increasingly urbanized emerging economies. Energy Economics, 56, 20–28.CrossRefGoogle Scholar
  22. Rehman, N., & Mandic, D. P. (2010). Multivariate empirical mode decomposition. Proceedings of the Royal Society A, 466(2117), 1291–1302.MathSciNetCrossRefzbMATHGoogle Scholar
  23. Rehman, N., & Mandic, D. P. (2011). Filter bank property of multivariate empirical mode decomposition. IEEE Transactions on Signal Processing, 59(5), 2421–2426.MathSciNetCrossRefzbMATHGoogle Scholar
  24. Rehman, N. U., Park, C., Huang, N. E., et al. (2013). EMD via MEMD: multivariate noise-aided computation of standard EMD. Advances in Adaptive Data Analysis, 5(02), 1350007.MathSciNetCrossRefGoogle Scholar
  25. Shahbaz, M., Loganathan, N., Muzaffar, A. T., Ahmed, K., & Jabran, M. A. (2016). How urbanization affects CO2 emissions in Malaysia? The application of STIRPAT model. Renewable & Sustainable Energy Reviews, 57, 83–93.CrossRefGoogle Scholar
  26. Shuai, C., Shen, L., Jiao, L., et al. (2017). Identifying key impact factors on carbon emission: Evidences from panel and time-series data of 125 countries from 1990 to 2011. Applied Energy, 1857, 310–325.CrossRefGoogle Scholar
  27. Sun, X., Tang, L., Yang, Y., Wu, D., & Li, J. (2014). Identifying the dynamic relationship between tanker freight rates and oil prices: In the perspective of multiscale relevance. Economic Modelling, 42, 287–295.CrossRefGoogle Scholar
  28. Wang, F., Wu, L. H., & Yang, C. (2010). Driving factors for growth of carbon dioxide emissions during economic development in China. Economic Research Journal, 02, 123–136.Google Scholar
  29. Wang, Z., Yin, F., Zhang, Y., & Zhang, X. (2012). An empirical research on the influencing factors of regional CO2 emissions: evidence from Beijing city, China. Applied Energy, 100(4), 277–284.CrossRefGoogle Scholar
  30. Wang, P., Wu, W., & Zhu, B. (2013). Examining the impact factors of energy related CO2 emissions using the STIRPAT model in Guangdong Province, China. Applied Energy, 106, 65–71.CrossRefGoogle Scholar
  31. Wang, H., Ang, B. W., & Bin, S. (2017). Assessing drivers of economy-wide energy use and emissions: IDA versus SDA. Energy Policy, 107, 585–599.CrossRefGoogle Scholar
  32. Xu, B., & Lin, B. (2015). How industrialization and urbanization process impact on CO2 emissions in China: evidence from nonparametric additive regression models. Energy Economics, 48, 188–202.CrossRefGoogle Scholar
  33. Xu, S. C., He, Z. X., & Long, R. Y. (2014). Factors that influence CO2 emissions due to energy consumption in China decomposition analysis using LMDI. Applied Energy, 127, 182–193.CrossRefGoogle Scholar
  34. Xu, L., Cheng, J., & Chen, X. (2017). Illumination variation interference suppression in remote PPG using PLS and MEMD. Electronics Letters, 53(4), 216–218.CrossRefGoogle Scholar
  35. Yu, L., Wang, Z., & Tang, L. (2015). A decomposition–ensemble model with data-characteristic-driven reconstruction for crude oil price forecasting. Applied Energy, 156, 251–267.CrossRefGoogle Scholar
  36. Zahra, A., Kanwal, N., Ur, R. N., et al. (2017). Seizure detection from EEG signals using multivariate empirical mode decomposition. Computers in Biology & Medicine, 88, 132–141.CrossRefGoogle Scholar
  37. Zhang, Y. J., & Da, Y. B. (2015). The decomposition of energy related CO2 emission and its decoupling with economic growth in China. Renewable and Sustainable Energy Reviews, 41, 1255–1266.CrossRefGoogle Scholar
  38. Zhang, X., Lai, K. K., & Wang, S. Y. (2008). A new approach for crude oil price analysis based on empirical mode decomposition. Energy Economics, 30(3), 905–918.CrossRefGoogle Scholar
  39. Zhao, X., Zhang, X., & Shao, S. (2016). Decoupling CO2 emissions and industrial growth in China over 1993–2013: the role of investment. Energy Economics, 60, 275–292.CrossRefGoogle Scholar
  40. Zhu, B. Z., Wang, K. F., & Wang, P. (2015). A study on influence factors of China’s CO2 emissions in stages. Economic Perspectives, 11, 79–89.Google Scholar
  41. Zhuang, N., Zeng, Y., Tong, L., et al. (2017). Emotion recognition from EEG signals using multidimensional information in EMD domain. BioMed Research International, 1, 8317357.Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Bangzhu Zhu
    • 1
    • 2
    Email author
  • Shunxin Ye
    • 2
  • Ping Wang
    • 1
  • Kaijian He
    • 3
  • Tao Zhang
    • 4
  • Rui Xie
    • 5
  • Yi-Ming Wei
    • 6
  1. 1.School of BusinessNanjing University of Information Science & TechnologyNanjingChina
  2. 2.School of ManagementJinan UniversityGuangzhouChina
  3. 3.Hunan Engineering Research Center for Industrial Big Data and Intelligent Decision MakingHunan University of Science and TechnologyXiangtanChina
  4. 4.Birmingham Business SchoolUniversity of BirminghamBirminghamUK
  5. 5.School of Economics and TradeHunan UniversityChangshaChina
  6. 6.Center for Energy and Environmental Policy ResearchBeijing Institute of TechnologyBeijingChina

Personalised recommendations