Energy Efficiency

, Volume 12, Issue 2, pp 551–565 | Cite as

Will policies to promote energy efficiency help or hinder achieving a 1.5 °C climate target?

  • Anthony PattEmail author
  • Oscar van Vliet
  • Johan Lilliestam
  • Stefan Pfenninger
Original Article


There is a large literature suggesting that improvements in energy efficiency support efforts at climate mitigation. Addressing a conceptual gap in that literature, however, we evaluate whether there are any conditions under which policies to promote improvements in energy efficiency could be counterproductive to efforts to limit climate change to 1.5 °C global warming from pre-industrial times. We identify three conditions under which this could be the case. The first condition is if policies for energy efficiency have a political opportunity cost, in terms of crowding out or delaying policies aimed at decarbonizing energy supply. There is an extensive literature in the fields of political science and policy studies to suggest that this is possible, but there have been no studies examining whether it has actually happened or is likely to happen in the future. The second condition is if investments in energy efficiency improvements come at a higher cost, per unit of fossil energy avoided, than do investments in new renewable energy supply. Current cost estimates suggest that there are some energy efficiency investments for which this is the case, but it is difficult to predict whether this will remain the case in the future. The third condition is if policies for energy efficiency, or specific investments in energy efficiency, were to delay the complete decarbonization of energy supply by more than some critical value. We show that critical delay is quite short—measured in weeks to months—in the case of a 1.5 °C temperature target, assuming constrained availability of negative emission technologies. It is impossible to say whether any of these conditions is likely, but in theory, each of them would appear to be possible.


Energy efficiency Climate change Climate policy Advocacy coalition framework 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Acemoglu, D., Aghion, P., Bursztyn, L., & Hemous, D. (2012). The environment and directed technical change. American Economic Review, 102, 131–166.CrossRefGoogle Scholar
  2. Aghion, P., Dechezleprêtre, A., Hémous, D., Martin, R., & Van Reenen, J. (2016). Carbon taxes, path dependency, and directed technical change: evidence from the auto industry. Journal of Political Economy, 124, 1–51.CrossRefGoogle Scholar
  3. Backlund, S., Thollander, P., Palm, J., & Ottosson, M. (2012). Extending the energy efficiency gap. Energy Policy, 51, 392–396. Scholar
  4. Banerjee, R., Cong, Y., Gielen, D., Jannuzzi, G., Maréchal, F., McKane, A.T., Rosen, M.A., van Es, D., Worrell, E., (2012). Chapter 8—Energy end use: Industry, in: Global energy assessment—toward a sustainable future. Cambridge University Press, Cambridge, UK and New York, NY, USA and the International Institute for Applied Systems Analysis, Laxenburg, Austria, pp. 513–574.Google Scholar
  5. Bertram, C., Johnson, N., Luderer, G., Riahi, K., Isaac, M., & Eom, J. (2015). Carbon lock-in through capital stock inertia associated with weak near-term climate policies. Technological Forecasting and Social Change, 90, 62–72. Scholar
  6. Blanco, G., Gerlach, R., Suh, S., Barrett, J., de Coninck, H. C., Diaz Morejon, C., Mathur, R., Nakicenovic, N., Ofosu Ahenkora, A., Pan, J., Pathak, H., Richels, R., Smith, S., Stern, D., Toth, F., & Zhou, P. (2014). Drivers, trends and mitigation, in: Climate change 2014: Mitigation of climate change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge UK and New York USA, pp. In 351–411.Google Scholar
  7. Blyth, W., Bradley, R., Bunn, D., Clarke, C., Wilson, T., & Yang, M. (2007). Investment risks under uncertain climate change policy. Energy Policy, 35, 5766–5773. Scholar
  8. Bolton, D., 2015. Sweden wants to become the first fossil fuel-free country in the world—how will it work? The Independent.Google Scholar
  9. Bowen, A., Campiglio, E., & Tavoni, M. (2014). A macroeconomic perspective on climate change mitigation: Meeting the financing challenge. Clim. Change Econ., 05, 1440005. Scholar
  10. Buchner, B., Falconer, A., Herve-Mignucci, M., Trabacchi, C., Brinkman, M., (2011). The landscape of climate finance. Climate Policy Initiative, Venice.Google Scholar
  11. Bürer, M. J., & Wüstenhagen, R. (2009). Which renewable energy policy is a venture capitalist’s best friend? Empirical evidence from a survey of international cleantech investors. Energy Policy, 37, 4997–5006. Scholar
  12. Calel, R., 2018. Adopt or innovate: Understanding technological responses to cap-and-trade.Google Scholar
  13. Calel, R., & Dechezleprêtre, A. (2016). Environmental tchnology and directed technological change: Evidence from the European carbon market. The Review of Economics and Statistics, 98, 173–191.CrossRefGoogle Scholar
  14. Chong, D., & Druckman, J. (2007). Framing theory. Annual Review of Political Science, 10, 103–126.CrossRefGoogle Scholar
  15. Chow, J., Kopp, R.J., Portney, P.R. (2003). Energy resources and global development. Science %R 302, 1528–1531.
  16. CIA. (2016). World Factbook 2014–15. Washington DC: Central Intelligence Agency.Google Scholar
  17. Díaz, P., van Vliet, O., & Patt, A. (2017). Do we need gas as a bridging fuel? A case study of the electricity system of Switzerland. Energies, 10.
  18. Edenhofer, O., Pichs-Madruga, R., Sokona, Y. (2014). IPCC, 2014: Climate change 2014: Mitigation of climate change. Cambridge University Press, Cambridge UK and New York USA.Google Scholar
  19. Eskeland, G., Criqui, P., Jochem, E., & Neufeldt, H. (2010). Transforming the European energy system. In M. Hulme & H. Neufeldt (Eds.), Making climate change work for us: European perspectives on adaptation and mitigation strategies (pp. 165–199). Cambridge: Cambridge University Press.Google Scholar
  20. Fisher-Vanden, K., Jefferson, G. H., Liu, H., & Tao, Q. (2004). What is driving China’s decline in energy intensity? Resource and Energy Economics, 26, 77–97. Scholar
  21. Fuss, S., Canadell, J. G., Peters, G. P., Tavoni, M., Andrew, R. M., Ciais, P., Jackson, R. B., Jones, C. D., Kraxner, F., Nakicenovic, N., Le Quere, C., Raupach, M. R., Sharifi, A., Smith, P., & Yamagata, Y. (2014). Betting on negative emissions. Nature Climate Change, 4, 850–853.CrossRefGoogle Scholar
  22. Fuss, S., Jones, C., Kraxner, F., Peters, G., Smith, P., Tavoni, M., Van Vuuren, D., Canadell, J., Jackson, R., & Milne, J. (2016). Research priorities for negative emissions. Environmental Research Letters, 11, 115007.CrossRefGoogle Scholar
  23. G20, 2017. G20 Hamburg: Climate and Energy Action Plan for Growth.Google Scholar
  24. GEA. (2012). Global energy assessment—toward a sustainable future. Cambridge University press, Cambridge, UK and New York, NY. In USA and the international institute for applied systems analysis. Austria: Laxenburg.Google Scholar
  25. Geels, F. (2005). Technological transition and system innovations: A co-evolutionary and socio-technical analysis. In Edward Elgar. UK: Cheltenham.Google Scholar
  26. Gillingham, K., Kotchen, M. J., Rapson, D. S., & Wagner, G. (2013). The rebound effect is overplayed. Nature, 493, 475–476.CrossRefGoogle Scholar
  27. Gillingham, K., & Palmer, K. (2014). Bridging the energy efficiency gap: Policy insights from economic theory and empirical evidence. Review of Environmental Economics and Policy, 8, 18–38. Scholar
  28. Gillingham, K., Rapson, D., & Wagner, G. (2016). The rebound effect and energy efficiency policy. Review of Environmental Economics and Policy, 10, 68–88. Scholar
  29. Grubb, M. (2014). Planetary economics: Energy, climate change and the three domains of sustainable development. London: Earthscan.CrossRefGoogle Scholar
  30. Grübler, A., Nakicenovic, N., & Victor, D. (1999). Dynamics of energy technologies and global change. Energy Policy, 27, 247–280.CrossRefGoogle Scholar
  31. Gupta, S., Harnisch, J., Barua, D., Chingambo, L., Frankel, P., Garrido, R., Gomez-Echeverri, L., Haites, E., Huang, Y., Kopp, R., Lefevre, B., Machado-Filho, H., & Massetti, E. (2014). Cross-cutting investment and finance issues. In Climate change 2014. New York: Cambridge University Press.Google Scholar
  32. Hardin, G. (1968). The tragedy of the commons. Science, 162, 1243–1248.CrossRefGoogle Scholar
  33. Harvey, L. (2013). Recent advances in sustainable buildings: Review of the energy and cost performance of the state-of-the-art best practices from around the world. Annual Review of Environment and Resources, 38, 281–309.CrossRefGoogle Scholar
  34. Held, A., Ragwitz, M., & Haas, R. (2006). On the success of policy strategies for the promotion of electricity from renewable energy sources in the EU. Energy & Environment, 17, 849–868. Scholar
  35. Howlett, M., McConnell, A., & Perl, A. (2016). Moving policy theory forward: Connecting multiple stream and advocacy coalition frameworks to policy cycle models of analysis. Australian Journal of Public Administration, 76, 65–79. Scholar
  36. Huang, Y., Barker, T. (2009). The clean development mechanism and sustainable development: A panel data analysis.Google Scholar
  37. IEA. (2016). Energy efficiency market report 2016. Paris: International Energy Agency.Google Scholar
  38. Ingold, K., Fischer, M., & Cairney, P. (2016). Drivers for policy agreement in nascent subsystems: An application of the advocacy coalition framework to fracking policy in Switzerland and the UK. Policy Studies Journal, 45, 442–463. Scholar
  39. IRENA (2016). The power to change: solar and wind cost reduction potential to 2025.Google Scholar
  40. Jaffe, A., Newell, R., & Stavins, R. (2003). Technological change and the environment. In Handbook of environmental economics (pp. 461–516). Elsevier Science B.V.Google Scholar
  41. Johnstone, N., Hascic, I., & Popp, D. (2010). Renewable energy policies and technological innovation: Evidence based on patent counts. Environmental and Resource Economics, 45, 133–155.CrossRefGoogle Scholar
  42. Kahn Ribeiro, S., Figueroa, M. J., Creutzig, F., Dubeux, C., Hupe, J., & Kobayashi, S. (2012). Chapter 9—Energy end-use: Transport, in: Global energy assessment—Toward a sustainable future. Cambridge University press, Cambridge, UK and New York, NY, USA and the International Institute for Applied Systems Analysis (pp. 575–648). Austria: Laxenburg.Google Scholar
  43. Karali, N., Park, W., McNeil, M. (2015). Using learning curves on energy-efficient technologies to estimate future energy savings and emissions reduction potentials in the U.S. iron and steel industry (No. LBNL-184179). Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, CA.Google Scholar
  44. Kingdon, J. (1995). Agendas, alternatives, and public policies (2nd ed.). New York: Longman.Google Scholar
  45. Kivimaa, P., & Mickwitz, P. (2011). Public policy as a part of transforming energy systems: Framing bioenergy in Finnish energy policy. Journal of Cleaner Production, 19, 1812–1821. Scholar
  46. Knight, E. (2010). The economic geography of clean tech venture capital.Google Scholar
  47. Labordena, M., Patt, A., Bazilian, M., Howells, M., & Lilliestam, J. (2017). Impact of political and economic barriers for concentrating solar power in sub-Saharan Africa. Energy Policy, 102, 52–72. Scholar
  48. Lilliestam, J., Ellenbeck, S., Karakosta, C., & Caldés, N. (2016). Understanding the absence of renewable electricity imports to the European Union. International Journal of Energy Sector Man, 10, 291–311. Scholar
  49. Lilliestam, J., Labordena, M., Patt, A., & Pfenninger, S. (2017). Empirically observed learning rates for concentrating solar power and their responses to regime change. Nature Energy, 2, 17094.CrossRefGoogle Scholar
  50. Lucon, O., Ürge-Vorsatz, D., Ahmed, A., Akbari, H., Bertoldi, P., Cabeza, L., Eyre, N., Gadgil, A., Harvey, L., Jiang, Y., Liphoto, E., Mirasgedis, S., Murakami, S., Parikh, J., Pyke, C., & Vilarino, M. (2014). Buildings, in: Climate change 2014. New York: Cambridge University Press.Google Scholar
  51. Luderer, G., Pietzcker, R., Bertram, C., Kriegler, E., Meinshausen, M., & Edenhofer, O. (2013). Economic mitigation challenges: How further delay closes the door for achieving climate targets. Environmental Research Letters, 8, 034033.CrossRefGoogle Scholar
  52. Madlener, R., & Alcott, B. (2009). Energy rebound and economic growth: A review of the main issues and research needs. Energy, 34, 370–376 Scholar
  53. MCC (2017). That’s how fast the carbon clock is ticking. Mercator Research Institute on Climate Commons and Climate Change: Research.Google Scholar
  54. Neij, L. (2008). Cost development of future technologies for power generation: A study based on experience curves and complementary bottom-up assessments. Energy Policy, 36, 2200–2211.CrossRefGoogle Scholar
  55. Noailly, J., & Smeets, R. (2015). Directing technical change from fossil-fuel to renewable energy innovation: An application using firm-level patent data. Journal of Environmental Economics and Management, 72, 15–37. Scholar
  56. Nykvist, B., & Nilsson, M. (2015). Rapidly falling costs of battery packs for electric vehicles. Nature Climate Change, 5, 329–332.CrossRefGoogle Scholar
  57. Obama, B. (2017). The irreversible momentum of clean energy. Science, 355, 126–129. Scholar
  58. OECD. (2015). Mapping channels to mobilize institutional investment in sustainable energy, green finance and investment. Paris: OECD Publishing.Google Scholar
  59. Ondraczek, J., Komendantova, N., & Patt, A. (2015). WACC the dog: The effect of financing costs on the levelized cost of solar PV power. Renewable Energy, 75, 888–898. Scholar
  60. Patt, A. (2015). Transforming energy: Solving climate change with technology policy. New York: Cambridge University Press.CrossRefGoogle Scholar
  61. Patterson, M. G. (1996). What is energy efficiency? Energy Policy, 24, 377–390. Scholar
  62. Pfenninger, S., Gauche, P., Lilliestam, J., Damerau, K., Wagner, F., & Patt, A. (2014). Potential for concentrating solar power to provide baseload and dispatchable power. Nature Climate Change, 4, 689–692.CrossRefGoogle Scholar
  63. Pietzcker, R. C., Ueckerdt, F., Carrara, S., de Boer, H. S., Després, J., Fujimori, S., Johnson, N., Kitous, A., Scholz, Y., Sullivan, P., & Luderer, G. (2017). System integration of wind and solar power in integrated assessment models: A cross-model evaluation of new approaches. Energy Economics, 64, 583–599. Scholar
  64. Portney, P., & Stavins, R. (2000). Public policies for environmental protection. Washington: Resources for the Future.Google Scholar
  65. Riahi, K., Kriegler, E., Johnson, N., Bertram, C., den Elzen, M., Eom, J., Schaeffer, M., Edmonds, J., Isaac, M., Krey, V., Longden, T., Luderer, G., Méjean, A., McCollum, D. L., Mima, S., Turton, H., van Vuuren, D. P., Wada, K., Bosetti, V., Capros, P., Criqui, P., Hamdi-Cherif, M., Kainuma, M., & Edenhofer, O. (2015). Locked into Copenhagen pledges — Implications of short-term emission targets for the cost and feasibility of long-term climate goals. Technological Forecasting and Social Change, 90, 8–23. Scholar
  66. Rogelj, J., Luderer, G., Pietzcker, R. C., Kriegler, E., Schaeffer, M., Krey, V., & Riahi, K. (2015). Energy system transformations for limiting end-of-century warming to below 1.5 [deg]C. Nature Clim. Change, 5, 519–527.CrossRefGoogle Scholar
  67. Rogelj, J., Popp, A., Calvin, K. V., Luderer, G., Emmerling, J., Gernaat, D., Fujimori, S., Strefler, J., Hasegawa, T., Marangoni, G., Krey, V., Kriegler, E., Riahi, K., van Vuuren, D. P., Doelman, J., Drouet, L., Edmonds, J., Fricko, O., Harmsen, M., Havlík, P., Humpenöder, F., Stehfest, E., & Tavoni, M. (2018). Scenarios towards limiting global mean temperature increase below 1.5 °C. Nature Climate Change, 8, 325–332. Scholar
  68. Rogelj, J., Schaeffer, M., Friedlingstein, P., Gillett, N. P., van Vuuren, D. P., Riahi, K., Allen, M., & Knutti, R. (2016). Differences between carbon budget estimates unravelled. Nature Climate Change, 6, 245–252.CrossRefGoogle Scholar
  69. Rubin, E. S., Azevedo, I. M. L., Jaramillo, P., & Yeh, S. (2015). A review of learning rates for electricity supply technologies. Energy Policy, 86, 198–218. Scholar
  70. Sabatier, P. A. (1988). An advocacy coalition framework of policy change and the role of policy-oriented learning therein. Policy Sciences, 21, 129–168. Scholar
  71. Schmidt, T. S. (2014). Low-carbon investment risks and de-risking. Nature Climate Change, 4, 237–239.CrossRefGoogle Scholar
  72. Scholz, Y., Gils, H. C., & Pietzcker, R. C. (2017). Application of a high-detail energy system model to derive power sector characteristics at high wind and solar shares. Energy Economics, 64, 568–582. Scholar
  73. Scrase, J. I., & Ockwell, D. G. (2010). The role of discourse and linguistic framing effects in sustaining high carbon energy policy—An accessible introduction. Energy Policy, 38, 2225–2233. Scholar
  74. Sims, R., Schaeffer, R., Creutzig, F., Cruz-Nunez, X., D’Agosto, M., Dimitriu, D., Meza, M., Fulton, L., Kobayashi, S., Lah, O., McKinnon, A., Newman, P., Ouyang, M., Schauer, J., Sperling, D., Tiwari, G., 2014. Transport, in: Climate change 2014: Mitigation of climate change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge UK and New York USA.Google Scholar
  75. Skidelsky, R., & Skidelsky, E. (2012). How much is enough: Money and the good life. New York: Other Press.Google Scholar
  76. Smith, P., Davis, S.J., Creutzig, F., Fuss, S., Minx, J., Gabrielle, B., Kato, E., Jackson, R.B., Cowie, A., Kriegler, E., van Vuuren, D.P., Rogelj, J., Ciais, P., Milne, J., Canadell, J.G., McCollum, D., Peters, G., Andrew, R., Krey, V., Shrestha, G., Friedlingstein, P., Gasser, T., Grübler, A., Heidug, W.K., Jonas, M., Jones, C.D., Kraxner, F., Littleton, E., Lowe, J., Moreira, J.R., Nakicenovic, N., Obersteiner, M., Patwardhan, A., Rogner, M., Rubin, E., Sharifi, A., Torvanger, A., Yamagata, Y., Edmonds, J., Yongsung, C. (2015). Biophysical and economic limits to negative CO2 emissions 6, 42.Google Scholar
  77. Smith, S. J., Wei, M., & Sohn, M. D. (2016). A retrospective analysis of compact fluorescent lamp experience curves and their correlations to deployment programs. Energy Policy, 98, 505–512. Scholar
  78. Sorrell, S. (2015). Reducing energy demand: A review of issues, challenges and approaches. Renewable and Sustainable Energy Reviews, 47, 74–82. Scholar
  79. Stulz, R., Tanner, S., & Sigg, R. (2011). Chapter 16 - Swiss 2000-watt society: A sustainable energy vision for the future A2 - Sioshansi, Fereidoon P. In Energy, sustainability and the environment (pp. 477–496). Boston: Butterworth-Heinemann.CrossRefGoogle Scholar
  80. Suh, S. (2006). Are services better for climate change? Environmental Science & Technology, 40, 6555–6560. Scholar
  81. Sustainable Development Commission. (2009). Prosperity without growth. London: British Sustainable Development Commission.Google Scholar
  82. United Nations Population Division, 2007. World population prospects: The 2006 revision.Google Scholar
  83. Ürge-Vorsatz, D., Eyre, N., Graham, P., Harvey, D., Hertwich, E., Jiang, Y., Kornevall, C., Majumdar, M., McMahon, J.E., Mirasgedis, S., Murakami, S., Novikova, A. (2012). Chapter 10—Energy end-use: Building, in: Global energy assessment—Toward a sustainable future. Cambridge University press, Cambridge, UK and New York, NY, USA and the International Institute for Applied Systems Analysis, Laxenburg, Austria, pp. 649–760.Google Scholar
  84. Van Buskirk, R., Kanter, C., Gerke, B., & Chu, S. (2014). A retrospective investigation of energy efficiency standards: Policies may have accelerated long term declines in appliance costs. Environmental Research Letters, 9, 114010.CrossRefGoogle Scholar
  85. van Vuuren, D. P., Stehfest, E., Gernaat, D. E. H. J., van den Berg, M., Bijl, D. L., de Boer, H. S., Daioglou, V., Doelman, J. C., Edelenbosch, O. Y., Harmsen, M., Hof, A. F., & van Sluisveld, M. A. E. (2018). Alternative pathways to the 1.5 °C target reduce the need for negative emission technologies. Nature Climate Change, 8, 391–397. Scholar
  86. Vogt-Schilb, A., & Hallegatte, S. (2014). Marginal abatement cost curves and the optimal timing of mitigation measures. Energy Policy, 66, 645–653. Scholar
  87. Voigt, S., De Cian, E., Schymura, M., & Verdolini, E. (2014). Energy intensity developments in 40 major economies: Structural change or technology improvement? Energy Economics, 41, 47–62. Scholar
  88. Wang, C., Liao, H., Pan, S.-Y., Zhao, L.-T., & Wei, Y.-M. (2014). The fluctuations of China’s energy intensity: Biased technical change. Applied Energy, 135, 407–414. Scholar
  89. Weible, C. M., & Jenkins-Smith, H. C. (2016). The advocacy coalition framework: An approach for the comparative analysis of contentious policy issues. In B. G. Peters & P. Zittoun (Eds.), Contemporary approaches to public policy: Theories, controversies and perspectives. (pp. 15–34). London: Palgrave Macmillan UK.Google Scholar
  90. Weiss, M., Junginger, M., Patel, M. K., & Blok, K. (2010a). A review of experience curve analyses for energy demand technologies. Technological Forecasting and Social Change, 77, 411–428. Scholar
  91. Weiss, M., Patel, M. K., Junginger, M., & Blok, K. (2010b). Analyzing price and efficiency dynamics of large appliances with the experience curve approach. Energy Policy, 38, 770–783. Scholar
  92. Wilson, C., Grubler, A., Gallagher, K. S., & Nemet, G. F. (2012). Marginalization of end-use technologies in energy innovation for climate protection. Nature Climate Change, 2, 780–788.CrossRefGoogle Scholar
  93. Wiser, R., Bolinger, M., 2014. 2013 Wind Technologies Market Report. Lawrence Berkeley Laboratory, United States Department of Energy, Berkeley, CA.Google Scholar
  94. Wiser, R., Jenni, K., Seel, J., Baker, E., Hand, M., Lantz, E., & Smith, A. (2016). Expert elicitation survey on future wind energy costs. Nature Energy, 1, 16135. Scholar
  95. World Bank (2017). World development indicators.Google Scholar
  96. Worrell, E., Bernstein, L., Roy, J., Price, L., & Harnisch, J. (2008). Industrial energy efficiency and climate change mitigation. Energy Efficiency, 2, 109–123. Scholar
  97. Wurlod, J., Noailly, J. (2016). The impact of green innovation on energy intensity: An empirical analysis for 14 industrial sectors in OECD countries.Google Scholar
  98. York, R., Rosa, E. A., & Dietz, T. (2003). STIRPAT, IPAT and ImPACT: Analytic tools for unpacking the driving forces of environmental impacts. Ecological Economics, 46, 351–365. Scholar
  99. Zhao, X., Ma, C., & Hong, D. (2010). Why did China’s energy intensity increase during 1998–2006: Decomposition and policy analysis. Energy Policy, 38, 1379–1388. Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Anthony Patt
    • 1
    Email author
  • Oscar van Vliet
    • 1
  • Johan Lilliestam
    • 1
  • Stefan Pfenninger
    • 1
  1. 1.ETH Zürich, Department of Environmental System ScienceZürichSwitzerland

Personalised recommendations