Advertisement

Energy Efficiency

, Volume 12, Issue 2, pp 441–462 | Cite as

The transition in energy demand sectors to limit global warming to 1.5 °C

  • Aurélie MéjeanEmail author
  • Céline Guivarch
  • Julien Lefèvre
  • Meriem Hamdi-Cherif
Original Article

Abstract

Achieving an emission pathway that would be compatible with limiting the global temperature increase to 1.5 °C compared with pre-industrial levels would require unprecedented changes in the economy and energy use and supply. This paper describes how such a transition may impact the dynamics of sectoral emissions. We compare contrasted global scenarios in terms of the date of emission peaks, energy efficiency, availability of low-carbon energy technologies, and fossil fuels, using the global integrated assessment model IMACLIM-R. The results suggest that it is impossible to delay the peak of global emissions until 2030 while remaining on a path compatible with the 1.5 °C objective. We show that stringent policies in energy-demand sectors—industry and transportation especially—are needed in the short run to trigger an immediate peak of global emissions and increase the probability to meet the 1.5 °C objective. Such sector-specific policies would contribute to lowering energy demand and would reduce the level of the carbon price required to reach the same temperature objective. Bringing forward the peak of global emissions does not lead to a homothetic adjustment of all sectoral emission pathways: an early peak of global emissions implies the fast decarbonization of the electricity sector and early emission reductions in energy-demand sectors—mainly industry and transportation.

Keywords

Global integrated assessment model Dynamics of sectoral CO2 emissions Energy demand patterns Peak of global emissions Scenario feasibility 1.5 °C 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest

References

  1. Abrahamse, W., Steg, L., Vlek, C., & Rothengatter, T. (2005). A review of intervention studies aimed at household energy conservation. Journal of Environmental Psychology, 25, 273–291.CrossRefGoogle Scholar
  2. Allcott, H., & Mullainathan, S. (2010). Behavior and Energy Policy. Science, 327, 1204–1205.CrossRefGoogle Scholar
  3. Anderson, K., & Peters, G. (2016). The trouble with negative emissions. Science, 354(6309), 182–183.CrossRefGoogle Scholar
  4. Bager, S., & Mundaca, L. (2017). Making “Smart Meters” smarter? Insights from a behavioural economics pilot field experiment in Copenhagen, Denmark. Energy Research & Social Science, 28, 68–76.CrossRefGoogle Scholar
  5. Bertoldi, P., Rezessy, S., Lees, E., Baudry, P., Jeandel, A., & Labanca, N. (2010). Energy supplier obligations and white certificate schemes: comparative analysis of experiences in the European Union. Energy Policy, 38, 1455–1469.CrossRefGoogle Scholar
  6. Bertoldi, P., Rezessy, S., & Oikonomou, V. (2013). Rewarding energy savings rather than energy efficiency: exploring the concept of a feed-in tariff for energy savings. Energy Policy, 56, 526–535.CrossRefGoogle Scholar
  7. Bibas, R., Méjean, A., & Hamdi-Cherif, M. (2015). Energy efficiency policies and the timing of action: an assessment of climate mitigation costs. Technological Forecasting and Social Change, 90(Part A), 137–152.CrossRefGoogle Scholar
  8. Chapman, L. (2007). Transport and climate change: a review. Journal of Transport Geography, 15, 354–367.CrossRefGoogle Scholar
  9. Clarke L., K. Jiang, K. Akimoto, M. Babiker, G. Blanford, K. Fisher-Vanden, J.-C. Hourcade, V. Krey, E. Kriegler, A. Löschel, D. McCollum, S. Paltsev, S. Rose, P. R. Shukla, M. Tavoni, B. C. C. van der Zwaan, and D.P. van Vuuren, 2014. Assessing transformation pathways. In: Climate change 2014: mitigation of climate change. Contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change [Edenhofer, O., R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow, T. Zwickel and J.C. Minx (eds.)]. Cambridge University Press, Cambridge, UK.Google Scholar
  10. Creutzig, F., McGlynn, E., Minx, J., & Edenhofer, O. (2011). Climate policies for road transport revisited (I): Evaluation of the current framework. Energy Policy, 39(5), 2396–2406.CrossRefGoogle Scholar
  11. Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Kadner, S., Minx, J. C., Brunner, S., Agrawala, S., Baiocchi, G., Bashmakov, I. A., Blanco, G., Broome, J., Bruckner, T., Bustamante, M., Clarke, L., Conte Grand, M., Creutzig, F., Cruz-Núñez, X., Dhakal, S., Dubash, N. K., Eickemeier, P., Farahani, E., Fischedick, M., Fleurbaey, M., Gerlagh, R., Gómez-Echeverri, L., Gupta, S., Harnisch, J., Jiang, K., Jotzo, F., Kartha, S., Klasen, S., Kolstad, C., Krey, V., Kunreuther, H., Lucon, O., Masera, O., Mulugetta, Y., Norgaard, R. B., Patt, A., Ravindranath, N. H., Riahi, K., Roy, J., Sagar, A., Schaeffer, R., Schlömer, S., Seto, K. C., Seyboth, K., Sims, R., Smith, P., Somanathan, E., Stavins, R., von Stechow, C., Sterner, T., Sugiyama, T., Suh, S., Ürge-Vorsatz, D., Urama, K., Venables, A., Victor, D. G., Weber, E., Zhou, D., Zou, J., & Zwickel, T. (2014). Technical summary. In O. Edenhofer, R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow, T. Zwickel, & J. C. Minx (Eds.), Climate change 2014: mitigation of climate change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press.Google Scholar
  12. Faruqui, A., & Sergici, S. (2010). Household response to dynamic pricing of electricity: a survey of 15 experiments. Journal of Regulatory Economics, 38, 193–225.CrossRefGoogle Scholar
  13. Figueres, C., Schellnhuber, H. J., Whiteman, G., Rockström, J., Hobley, A., & Rahmstorf, S. (2017). Three years to safeguard our climate. Nature, 546(7660), 593–595.CrossRefGoogle Scholar
  14. Fuss, S., Canadell, J. G., Peters, G. P., Tavoni, M., Andrew, R. M., Ciais, P., Jackson, R. B., Jones, C. D., Kraxner, F., & Nakicenovic, N. (2014). Betting on negative emissions. Nature Climate Change, 4(10), 850–853.CrossRefGoogle Scholar
  15. Goodwin, P., Dargay, J., & Hanly, M. (2004). Elasticities of road traffic and fuel consumption with respect to price and income: a review. Transport Reviews, 24(3), 275–292.CrossRefGoogle Scholar
  16. Grubler, A., Bai, X., Buettner, T., Dhakal, S., Fisk, D., Ichinose, T., Keristead, J., Sammer, G., Satterthwaite, D., Schulz, N., Shah, N., Steinberger, J., & Weiz, H. (2012). Urban energy systems. In Global energy assessment—toward a sustainable future (pp. 1307–1400). Cambridge, UK: International Institute for Applied Systems Analysis and Cambridge University Press.CrossRefGoogle Scholar
  17. Guivarch, C., & Hallegatte, S. (2013). 2C or not 2C? Global Environmental Change, 23(1), 179–192.CrossRefGoogle Scholar
  18. Guivarch, C., Monjon, S., Rozenberg, J., & Vogt-Schilb, A. (2015). Would climate policy improve the European energy security? Climate Change Economics, 6, 1550008.CrossRefGoogle Scholar
  19. Harmelink, M., Nilsson, L., & Harmsen, R. (2008). Theory-based policy evaluation of 20 energy efficiency instruments. Energy Efficiency, 1, 131–148.CrossRefGoogle Scholar
  20. Hansen, J., Sato, M., Kharecha, P., Beerling, D., Berner, R., Masson-Delmotte, V., Pagani, M., Raymo, M., Royer, D. L., & Zachos, J. C. (2008). Target atmospheric CO2: where should humanity aim? The Open Atmospheric Science Journal., 2(1), 217–231.CrossRefGoogle Scholar
  21. Hare, W. L., Cramer, W., Schaeffer, M., Battaglini, A., & Jaeger, C. C. (2011). Climate hotspots: key vulnerable regions, climate change and limits to warming. Regional Environmental Change, 11(Supplement 1), 1–13.CrossRefGoogle Scholar
  22. IPCC. (2014). Climate change 2014: mitigation of climate change. In O. Edenhofer, R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow, T. Zwickel, & J. C. Minx (Eds.), Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press.Google Scholar
  23. IEA, 2008. World energy outlook. Tech. rep., IEA/OECD, Paris, France.Google Scholar
  24. Iyer, G., Hultman, N., Eom, J., McJeon, H., Patel, P., & Clarke, L. (2015). Diffusion of low-carbon technologies and the feasibility of long-term climate targets. Technological Forecasting and Social Change, 90(Part A), 103–118.CrossRefGoogle Scholar
  25. Jackson, R. B., Canadell, J. G., Le Quéré, C., Andrew, R. M., Korsbakken, J. I., Peters, G. P., & Nakicenovic, N. (2016). Reaching peak emissions. Nature Climate Change, 6(1), 710.CrossRefGoogle Scholar
  26. Kriegler, E., Petermann, M., Krey, V., Schwanitz, V. J., Luderer, G., Ashina, S., Bosetti, V., et al. (2015). Diagnostic indicators for integrated assessment models of climate policy. Technological Forecasting and Social Change, 90(Part A), 45–61.CrossRefGoogle Scholar
  27. Kunreuther, H., & Weber, E. U. (2014). Aiding Decision Making to Reduce the Impacts of Climate Change. Journal of Consumer Policy, 37, 397–411.CrossRefGoogle Scholar
  28. Le Quéré, C., Andrew, R. M., Canadell, J. G., Sitch, S., Korsbakken, J. I., Peters, G. P., Manning, A. C., Boden, T. A., Tans, P. P., & Houghton, R. A. (2016). Global carbon budget 2016. Earth System Science Data, 8(2), 605–649.CrossRefGoogle Scholar
  29. Luderer, G., Pietzcker, R. C., Bertram, C., Kriegler, E., Meinshausen, M., & Edenhofer, O. (2013). Economic mitigation challenges: how further delay closes the door for achieving climate targets. Environmental Research Letters, 8(3), 034033.CrossRefGoogle Scholar
  30. McGilligan, C., Sunikka-Blank, M., & Natarajan, S. (2010). Subsidy as an agent to enhance the effectiveness of the energy performance certificate. Energy Policy, 38, 1272–1287.CrossRefGoogle Scholar
  31. Millar, R. J., Fuglestvedt, J. S., Friedlingstein, P., Rogelj, J., Grubb, M. J., Matthews, H. D., Skeie, R. B., Forster, P. M., Frame, D. J., & Allen, M. R. (2017). Emission budgets and pathways consistent with limiting warming to 1.5 °C. Nature Geoscience, 10, 741–747.CrossRefGoogle Scholar
  32. Pichert, D., & Katsikopoulos, K. V. (2008). Green defaults: Information presentation and pro-environmental behaviour. Journal of Environmental Psychology, 28, 63–73.CrossRefGoogle Scholar
  33. Riahi, K., Kriegler, E., Johnson, N., Bertram, C., den Elzen, M., Eom, J., Schaeffer, M., et al. (2015). Locked into Copenhagen pledges—implications of short-term emission targets for the cost and feasibility of long-term climate goals. Technological Forecasting and Social Change, 90(Part A), 8–23.CrossRefGoogle Scholar
  34. Rogelj, J., Popp, A., Calvin, K. V., Luderer, G., Emmerling, J., Gernaat, D., Fujimori, S., Strefler, J., Hasegawa, T., Marangoni, G., Krey, V., Kriegler, E., Riahi, K., van Vuuren, D. P., Doelman, J., Drouet, L., Edmonds, J., Fricko, O., Harmsen, M., Havlík, P., Humpenöder, F., Stehfest, E., & Tavoni, M. (2018). Scenarios towards limiting global mean temperature increase below 1.5 °C. Nature Climate Change, 8, 325–332.CrossRefGoogle Scholar
  35. Rogelj, J., Luderer, G., Pietzcker, R. C., Kriegler, E., Schaeffer, M., Krey, V., & Riahi, K. (2015). Energy system transformations for limiting end-of-century warming to below 1.5 °C. Nature Climate Change, 5(6), 519–527.CrossRefGoogle Scholar
  36. Rogelj, J., Schaeffer, M., Friedlingstein, P., Gillett, N. P., van Vuuren, D. P., Riahi, K., Allen, M., & Knutti, R. (2016). Differences between carbon budget estimates unravelled. Nature Climate Change, 6, 245–252.CrossRefGoogle Scholar
  37. Rozenberg, J., Hallegatte, S., Vogt-Schilb, A., Sassi, O., Guivarch, C., Waisman, H., & Hourcade, J. C. (2010). Climate policies as a hedge against the uncertainty on future oil supply. Climatic Change, 101(3–4), 663–668.CrossRefGoogle Scholar
  38. Schafer, A., & Victor, D. G. (2000). The future mobility of the world population. Transportation Research Part A: Policy and Practice, 34, 171–205.Google Scholar
  39. Schafer, A. (2012). Introducing Behavioral Change in Transportation into Energy/Economy/Environment Models (World Bank Policy Research Working Paper No. 6234). Washington, D.C: World Bank.CrossRefGoogle Scholar
  40. Sims, R., Schaeffer, R., Creutzig, F., Cruz-Núñez, X., D’Agosto, M., Dimitriu, D., Figueroa Meza, M. J., Fulton, L., Kobayashi, S., Lah, O., McKinnon, A., Newman, P., Ouyang, M., Schauer, J. J., Sperling, D., & Tiwari, G. (2014). Transport. In O. Edenhofer, R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow, T. Zwickel, & J. C. Minx (Eds.), Climate change 2014: mitigation of climate change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press.Google Scholar
  41. Smith, P., Davis, S. J., Creutzig, F., Fuss, S., Minx, J., Gabrielle, B., Kato, E., Jackson, R. B., Cowie, A., & Kriegler, E. (2016). Biophysical and economic limits to negative CO2 emissions. Nature Climate Change, 6(1), 42–50.CrossRefGoogle Scholar
  42. Stocker, T. F. (2013). The closing door of climate targets. Science, 339(6117), 280–282.CrossRefGoogle Scholar
  43. Suzuki, M. (2015). Identifying roles of international institutions in clean energy technology innovation and diffusion in the developing countries: matching barriers with roles of the institutions. Journal of Cleaner Production, 98, 229–240.CrossRefGoogle Scholar
  44. Tanaka, K. (2011). Review of policies and measures for energy efficiency in industry sector. Energy Policy, 39, 6532–6550.CrossRefGoogle Scholar
  45. van Vuuren, D., den Elzen, M., Lucas, P., Eickhout, B., Strengers, B., van Ruijven, B., Wonink, S., & van Houdt, R. (2007). Stabilizing greenhouse gas concentrations at low levels: an assessment of reduction strategies and costs. Climatic Change, 81, 119–159.CrossRefGoogle Scholar
  46. Waisman, H., Guivarch, C., & Lecocq, F. (2013). The transportation sector and low-carbon growth pathways: modelling urban, infrastructure, and spatial determinants of mobility. Climate Policy, 13(1), 106–129.CrossRefGoogle Scholar
  47. Waisman, H., Guivarch, C., Grazi, F., & Hourcade, J. C. (2012). The IMACLIM-R model: infrastructures, technical inertia and the costs of low carbon futures under imperfect foresight. Climatic Change, 114(1), 101–120.CrossRefGoogle Scholar
  48. World Bank and Ecofys. 2017. Carbon pricing watch 2017. Washington, DC: World Bank.Google Scholar
  49. Zhou, N., McNeil, M., & Levine, M. (2011). Assessment of building energy-saving policies and programs in China during the 11th five year plan. Berkeley, CA: Lawrence Berkeley National Laboratory 19 pp.CrossRefGoogle Scholar
  50. Grübler, A., Nakicenovic, N., & Victor, D. G. (May 1999). Dynamics of energy technologies and global change. Energy Policy, 27(5), 247–280.CrossRefGoogle Scholar
  51. IEA, 2007. World energy outlook. Tech. rep., IEA/OECD, Paris, France.Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.CIREDNogent-sur-MarneFrance
  2. 2.CNRSNogent-sur-MarneFrance
  3. 3.Ecole des Ponts ParisTechMarnela-ValléeFrance
  4. 4.AgroParisTechParisFrance
  5. 5.SMASHNogent-sur-MarneFrance

Personalised recommendations