Advertisement

Energy Efficiency

, Volume 12, Issue 1, pp 139–155 | Cite as

Energy performance of buildings: A statistical approach to marry calculated demand and measured consumption

  • Michael HörnerEmail author
  • Markus Lichtmeß
Original Article
  • 117 Downloads

Abstract

In public debate, Energy Performance Certificates (EPCs) of buildings have been criticised for not reflecting the energy demand realistically. And indeed, measurement, as in energy bills, usually differs from the calculation, in particular, when simplified energy performance calculation models and standard specifications are applied, as in EPCs. Thus, energy-saving potentials of refurbishment recommendations and their cost-effectiveness tend to be over-estimated. Of course, this is not desirable. These effects were analysed in two sets of data, the Energy Performance Certificate Register for residential buildings in Luxemburg, run by the Luxemburg Ministry of the Economy (Lichtmeß, 2012) and a database gathered in the research project “Teilenergiekennwerte von Nichtwohngebäuden (TEK)” (Hörner et al., 2014a) funded by the German Federal Ministry of Economic Affairs and Energy. Multiple linear regression and error calculus were applied to study the gap between measurement and various calculation models in detail. A statistical procedure is proposed to estimate expectation value and variance of the future energy consumption of buildings in case of refurbishment, as a supplement to standard calculations in EPCs for example. Prerequisite is that for a sufficient number of buildings, data on both, measured energy consumption and calculated demand, are available.

Keywords

Energy performance of buildings Multiple linear regression Errors-in-variables model Calculated energy demand Measured energy consumption Calibration 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. K. Backhaus, K. et al. (2005): Multivariate Analysemethoden – Eine anwendungsorientierte Einführung, Springer-Verlag, Berlin 2005, 11. Auflage.Google Scholar
  2. Brohus, H., & Heiselberg, P. (2009). Application of partial safety factors in building energy performance assessment (pp. 1014–1021). Glasgow: Eleventh International IBPSA Conference.Google Scholar
  3. Building Research Establishment Ltd. (2013): Energy follow-up survey 2011—report 2: mean household temperatures, BRE report number 283078 prepared by BRE on behalf of the Department of Energy and Climate Change (DECC),UK, December 2013.Google Scholar
  4. Manfred Casties (1997): Untersuchung zum Zusammenhang zwischen Nutzerverhalten und Heizenergieverbrauch, -bedarf von Wohngebäuden; Verlag für Wissenschaft und Forschung, Berlin 1997.Google Scholar
  5. Chari, A., Xanthos, S., & Christodoulou, S. (2017). Stochastic assessment of the energy performance of buildings, S.E. In Energy efficiency (Vol. 10, pp. 1573–1591).  https://doi.org/10.1007/s12053-017-9545-0.Google Scholar
  6. Corrado, V., & Mechri, H. E. (2009). Uncertainty and sensitivity analysis for building energy rating. Journal of Building Physics, 33(2), 125–156.CrossRefGoogle Scholar
  7. DIN Deutsches Institut für Normung e.V.: DIN V 18599: 2016-10 Energy efficiency of buildings—calculation of the net, final and primary energy demand for heating, cooling, ventilation, domestic hot water and lighting, Beuth Verlag, Berlin 2016.Google Scholar
  8. DIN Deutsches Institut für Normung e.V.: DIN V 18599-10: 2011-12 Energy efficiency of buildings—calculation of the net, final and primary energy demand for heating, cooling, ventilation, domestic hot water and lighting - Part 10: boundary conditions of use, climatic data, Beuth Verlag, Berlin 2011.Google Scholar
  9. Hans Erhorn (2007): Bedarf – Verbrauch: Ein Reizthema ohne Ende oder die Chance für sachliche Energieberatung?, Fraunhofer-Institut für Bauphysik, Stuttgart (available at: http://www.buildup.eu/sites/default/files/Manuskript_Messe_Bau_2007_Erhorn_Bedarf-Verbrauch_15_01_07_p.pdf).
  10. Alicia Graf (2016): Analyse des Energieverbrauchs wärmetechnisch modernisierter Mehrfamilienhäuser - Entwicklung von Verbrauchsbenchmarks zur Beurteilung der Energieeffizienz, Masterthesis Institut für Massivbau, Technische Universität Darmstadt, 2016, S. 38–43.Google Scholar
  11. Edelgard Gruber et al. (2005): Energiepass für Gebäude – Evaluation des Feldversuchs. Schlussbericht an die Deutsche Energie-Agentur, Karlsruhe 2005.Google Scholar
  12. Michael Hörner et al. (2014a): Teilenergiekennwerte – Neue Wege in der Energieanalyse von Nichtwohngebäuden im Bestand, IWU 05/14, ISBN 978–3–941140-38-7.Google Scholar
  13. Michael Hörner, Jens Knissel et. al. (2014b): Berechnungsgrundlagen des TEK-Tools Version TEK 6.2, IWU 03/14, Darmstadt 2014, ISBN 978-3-941140-36-3 (TEK-Tool (V 6.3-DB4.34), downloadable at http://www.iwu.de/forschung/energie/laufend/teilenergiekennwerte-von-nicht-wohngebaeuden/).
  14. Jens Knissel et al. (2006): Vereinfachte Ermittlung von Primärenergiekennwerten – zur Bewertung der wärmetechnischen Beschaffenheit in ökologischen Mietspiegeln, IWU, Darmstadt 2006 (available at http://www.iwu.de/fileadmin/user_upload/dateien/energie/werkzeuge/ Vereinfachte_Ermittlung_von_Primaerenergiekenwerten-1.0.pdf).
  15. Le gouvernement du grand-duché de Luxembourg (2007): Règlement grand-ducal du 30 novembre 2007 concernant la performance énergétique des bâtiments d’habitation (14.12.2007). Luxembourg : Service central de legislation.Google Scholar
  16. Markus Lichtmeß (2012): Forschungsprojekt Gebäudedatenbank und Plausibilitätscheck im LuxEeB-Tool, interne Ergebnisse, Goblet Lavandier & Associés Luxemburg.Google Scholar
  17. Loga, T. et al. (2003): Der Einfluss des Gebäudestandards und des Nutzerverhaltens auf die Heizkosten, IWU on behalf of Viterra Energy Services AG, Essen, 2003, Page 50.Google Scholar
  18. Santos Silva, A., & Ghisi, E. (2014). Uncertainty analysis of user behaviour and physical parameters in residential building performance simulation. Energy and Buildings, 76, 381–391, ISSN 0378-7788.  https://doi.org/10.1016/j.enbuild.2014.03.001.CrossRefGoogle Scholar
  19. Franz Schröder (2017): Note, METRONA Wärmemesser Union GmbH, München, 2017.Google Scholar
  20. Franz Schröder et al. (2014): Reale Trends des spezifischen Energieverbrauchs und repräsentativer Wohnraumtemperierung bei steigendem Modernisierungsgrad im Wohnungsbestand, Bauphysik 36 (2014), Heft 6, p. 309 - 324.Google Scholar
  21. Sunikka-Blank, M., & Galvin, R. (2012). Introducing the prebound effect: the gap between performance and actual energy consumption. Building Research & Information, 40(3), 260–273.CrossRefGoogle Scholar
  22. Jeffrey M. Wooldridge (2003): Introductory econometrics: a modern approach, 2e, Thomson learning – South-Western, Mason, Ohio 45040, USA, p. 305 ff., 503 ff.Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut Wohnen und Umwelt (IWU)DarmstadtGermany
  2. 2.Goblet Lavandier & Associés Ingénieurs-Conseils S.A. (GoLav)LuxembourgLuxembourg

Personalised recommendations