Advertisement

Sādhanā

, 44:132 | Cite as

A provable secure key-escrow-free identity-based signature scheme without using secure channel at the phase of private key issuance

  • SUBHAS CHANDRA SAHANAEmail author
  • MANIK LAL DAS
  • BUBU BHUYAN
Article
  • 35 Downloads

Abstract

The identity-based cryptosystems furnish us with simplest key management procedures. Yet, they have a very slow adoption in cryptography due to the key escrow problem and the necessity of a secure channel between the user and the Private Key Generator (PKG) to transmit the created private key to the user. In this paper, we propose an identity-based signature scheme that not only solves the key escrow problem but also eliminates the requirement of the secure channel. The proposed scheme is secure against existential forgery under adaptively chosen message and ID attacks in the random oracle model assuming the hardness of the Computational Diffie–Hellmann Problem (CDHP). Furthermore, we compare the efficiency of our scheme to that of a similar established scheme.

Keywords

Digital signature identity-based cryptosystem key escrow problem computation Diffie–Hellman problem (CDHP) adaptively chosen message and identity attack 

References

  1. 1.
    Menezes A, Vanstone S and Van Oorschot P C 1996 Handbook of applied cryptography. Boca Raton, FL, USA: CRC PresszbMATHGoogle Scholar
  2. 2.
    Al-Riyami S and Paterson K 2003 Certificateless public key cryptography. In: Advances in Cryptology-ASIACRYPT-2003, LNCS 2894, pp. 452–473CrossRefGoogle Scholar
  3. 3.
    Shamir A 1984 Identity-based cryptosystems and signature schemes. In: Blakeley G R and Chaum D (Eds.) Advances in Cryptology-CRYPTO, LNCS 196. Springer-Verlag, Berlin, Heidelberg, pp. 47–53Google Scholar
  4. 4.
    Guillou L and Quisquater J J 1988 A paradoxical identity-based signature scheme resulting from zero-knowledge. In: Goldwasser S (Ed.) Advances in Cryptology-CRYPTO, LCNS 403. Berlin: Springer-Verlag, pp. 216–231Google Scholar
  5. 5.
    Fiat A and Shamir A 1986 How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko A M (Ed.) Advances in Cryptology-CRYPTO’86, LCNS 263. Berlin: Springer-Verlag, pp. 186–194Google Scholar
  6. 6.
    Sahu Rajeev A and Sahadeo P 2011 ID-based signatures schemes from bilinear pairing: a survey. Front. Electr. Electron. Eng. China 6(4): 487–500CrossRefGoogle Scholar
  7. 7.
    Boneh D and Franklin M 2001 Identity-based encryption from the Weil pairing. In: Advances in Cryptology-CRYPTO 2001. Springer, Berlin, Heidelberg, pp. 213–229CrossRefGoogle Scholar
  8. 8.
    Barreto P S L M 2007 The pairing-based crypto lounge. http://paginas.terra.com.br/informatica/paulobarreto/pblounge.html. Accessed date 15th October, 2017
  9. 9.
    Lee K and Lee D H 2014 Security analysis of an identity-based strongly unforgeable signature scheme. Inf. Sci. 286: 29–34MathSciNetCrossRefGoogle Scholar
  10. 10.
    Kar J 2014 Provably secure online/off-line identity-based signature scheme for wireless sensor network. Int. J. Netw. Secur. 16(1): 29–39Google Scholar
  11. 11.
    Joonsang B and Yuliang Z 2004 Identity-based threshold signature scheme from the bilinear pairings. In: IEEE International Conference on Information Technology: Coding and Computing, Information Assurance and Security Track, IEEE Computer Society. ISBN: 0-7695-2108-8/04, pp. 124–128Google Scholar
  12. 12.
    Chen L, Harrison K, Soldera D and Nigel P S 2003 Applications of multiple trust authorities in pairing based cryptosystems. In: Infrastructure Security. Berlin/Heidelberg: Springer, pp. 260–275CrossRefGoogle Scholar
  13. 13.
    Gentry C 2003 A certificate-based encryption and the certificate revocation problem. In: Proceedings of the International Conference on the Theory and Applications of Cryptographic Techniques. Berlin/Heidelberg: Springer, pp. 272–293Google Scholar
  14. 14.
    Lee B, Boyd C, Dawson E, Kim K, Yang J and Yoo S 2004 Secure key issuing in ID-based cryptography. In: Proceedings of the Australian Information Security Workshop, AISW-04, pp. 69–74Google Scholar
  15. 15.
    Das M L, Saxena A and Phatak D B 2007 A proxy signature scheme with effective revocation using bilinear pairings. Arxiv preprint 07 arXiv:0712.3084
  16. 16.
    Das M L 2010 A key escrow-free identity-based signature scheme without using secure channel. Cryptologia 35(1): 58–72,  https://doi.org/10.1080/01611194.2010.515905 CrossRefzbMATHGoogle Scholar
  17. 17.
    Koblitz N 1994 A course in number theory and cryptography, vol. 114. Springer Science & Business Media, UK, Berlin/Heidelberg p. 114CrossRefGoogle Scholar
  18. 18.
    Hankerson D, Menezes A and Vanstone S 2004 Proceedings of elliptic curve cryptography-04. Springer USzbMATHGoogle Scholar
  19. 19.
    Hess F 2002 An efficient identity based signature schemes based on pairings. In: Nyberg K and Heys H (Eds.) Selected Areas in Cryptography, SAC2002, LCNS 2595. Berlin: Springer-Verlag, pp. 310–324Google Scholar
  20. 20.
    Das M L 2015 Key-escrow free multi-signature scheme using bilinear pairings. Groups Complex. Cryptol. 7(1): 47–57MathSciNetzbMATHGoogle Scholar
  21. 21.
    Pointcheval D and Jacques S 1996 Security proofs for signature schemes. In: Proceedings of Eurocrypt 1996, pp. 387–398CrossRefGoogle Scholar
  22. 22.
    Huang X, Yi M, Willy S, Wong D and Wei W 2007 Certificateless signature revisited. In: Information Security and Privacy. Berlin/Heidelberg: Springer, pp. 308–322Google Scholar
  23. 23.
    Cha C J and Cheon J H 2003 An identity-based signature from gap Diffie–Hellman groups. In: Proceedings of the International Workshop on Public Key Cryptography. Berlin/Heidelberg: Springer, pp. 18–30Google Scholar
  24. 24.
    Huang Z, Chen K and Wang Y 2005 Efficient identity-based signatures and blind signatures. In: Proceedings of the International Conference on Cryptology and Network Security. Berlin/Heidelberg: Springer, pp. 120–133CrossRefGoogle Scholar
  25. 25.
    David P and Stern J 2000 Security arguments for digital signatures and blind signatures. J. Cryptol. 13(3): 361–396CrossRefGoogle Scholar
  26. 26.
    The pairing based cryptography (pbc) library. https://crypto.stanford.edu/pbc/. Accessed date 17th October, 2017

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  • SUBHAS CHANDRA SAHANA
    • 1
    Email author
  • MANIK LAL DAS
    • 2
  • BUBU BHUYAN
    • 1
  1. 1.Department of Information TechnologyNorth Eastern Hill UniversityShillongIndia
  2. 2.Faculty Block 2Dhirubhai Ambani Institute of Information and Communication Technology (DA-IICT)GandhinagarIndia

Personalised recommendations