, 44:106 | Cite as

Single- and double-beam reflectarrays for Ka band communication

  • RANIA ELSHARKAWYEmail author
  • A -R SEBAK


The Ka band has found applications in satellite, and radar communications. It is also expected that this band will be utilized for 5G applications. This paper presents single- and double-beam microstrip reflectarrays with single layer and compact size for Ka band communications at 28 GHz. Three different unit cells are investigated in this paper. Single- and double-beam reflectarrays are investigated. The reflectarrays are designed at 28 GHz with a physical size of 10λ × 10λ. A pyramidal horn antenna is used for the feeding purpose. The focal-length-to-diameter (F/D) ratio is equal to one. Two different scenarios for single-beam reflectarrays are presented: one with a broadside direction and the other with a 10° tilt angle. The simulation results show that for the broadside single-beam scenario, it is possible to achieve a gain up to 28.5 dB, and a 1-dB gain-bandwidth up to 30.7%. On the other hand, the presented reflectarray for the single-beam design at 10° tilt angle gives a gain of about 26.4 dB, a side lobe level (SLL) of about −15.6 dB, and a 19.3% gain-bandwidth. For the double-beam reflectarray, four different designs at different angles of 5°, 10°, 15°, and 20° have been simulated and compared. Moreover, the simulation results on the double-beam reflectarray show that the double-beam design at 10° is better from the gain and SLL perspectives. Two prototypes for broadside single-beam reflectarrays have been fabricated and measured. The measurement results show a good match with the simulation results. Gain flatness is guaranteed for both the simulated and measured results over the band of interest.


Ka band reflectarray 5G single-beam reflectarray double-beam reflectarray 

List of symbols


free space wavelength


integer number

\( f_{{o}} \)

center frequency


the reflectarray aperture diameter


focal length

\( k_{o} \)

free-space wavenumber at the design frequency


speed of light

\( \gamma_{i} \)

the ith element phase required to compensate for the delay resulting from the corresponding path


  1. 1.
    Agiwal M, Roy A and Saxena N 2016 Next generation 5G wireless networks: a comprehensive survey. IEEE Commun. Surv. Tutor. 18: 1617–1655CrossRefGoogle Scholar
  2. 2.
    Huang K and Edwards D J 2008 Millimetre wave antennas for gigabit wireless communications. Wiley, HobokenCrossRefGoogle Scholar
  3. 3.
    Tagonski S D and Pozar D M 1994 Analysis and design of a microstrip reflectarray using patches of variable size. In: Proceedings of IEEE Antennas and Propagation Society International Symposium and URSI National Radio Science Meeting, vol. 3, pp. 1820–1823Google Scholar
  4. 4.
    Huang J and Encinar J A 2008 Reflectarray antennas. Wiley, HobokenGoogle Scholar
  5. 5.
    Guha D and Antar Y 2011 Microstrip and printed antennas new trends, techniques and applications. Wiley, HobokenGoogle Scholar
  6. 6.
    Nayeri P, Yang F and Elsherbeni A Z 2013 Design of single-feed reflectarray antennas with asymmetric multiple beams using the particle swarm optimization method. IEEE Trans. Antennas Propag. 61: 4598–4605CrossRefGoogle Scholar
  7. 7.
    Nayeri P, Yang F and Elsherbeni A Z 2012 Design and experiment of a single-feed quad-beam reflectarray antenna. IEEE Trans. Antennas Propag. 60:1166–1171CrossRefGoogle Scholar
  8. 8.
    Fang X, Wu Q and Yang G 2014 Dual-beam realization of reflectarray antenna based on phase synthesis method (PSM). In: Proceedings of 3rd Asia-Pacific on Antennas and Propagation, pp. 603–606Google Scholar
  9. 9.
    Arrebola M, Encinar J A and Barba M 2008 Multifed printed reflectarray with three simultaneous shaped beams for LMDS central station antenna. IEEE Trans. Antennas Propag. 56: 1518–1527CrossRefGoogle Scholar
  10. 10.
    Tyapkin V N, Kartsan I N, Dmitriev D D and Goncharov A E 2015 Spatial filtering algorithms in adaptive multi-beam hybrid reflector antennas. In: Proceedings of International Siberian on Control and Communications (SIBCON), pp. 1–5Google Scholar
  11. 11.
    Qu Y, Guo C, Guo H and Ding J 2015 Design of single-feed multi-beam reflectarray using iterative fourier techniques. Int. J. Smart Home 9: 187–194CrossRefGoogle Scholar
  12. 12.
    Martinez-de-Rioja E, Encinar J A, Florencio R and Boix R R 2016 Reflectarray in K and Ka bands with independent beams in each polarization. In: Proceedings of the AP-S, pp. 1199–1200Google Scholar
  13. 13.
    Dai X and Zhou T 2016 Dual-band reflectarray with crossed-dipole elements for GSM and LTE applications. AEU Int. J. Electron. Commun. 70: 605–610CrossRefGoogle Scholar
  14. 14.
    Mahmoud A, Kishk A A, Hao Z and Hong W 2016 Ka-band circularly polarized reflectarray using a double-layers cross slot. IEEE Antennas Propag. Mag. 58: 60–68CrossRefGoogle Scholar
  15. 15.
    [15] Zhang S 2017 Three-dimensional printed millimetre wave dielectric resonator reflectarray. IET Microw. Antennas Propag. 11: 2005–2009CrossRefGoogle Scholar
  16. 16.
    An W, Xu S, Yang F and Gao J 2014 A Ka-band reflectarray antenna integrated with solar cells. IEEE Trans. Antennas Propag. 62: 5539–5546MathSciNetCrossRefGoogle Scholar
  17. 17.
    Hong W, Jiang Z H, Yu C, Zhou J, Chen P, Yu Z, Zhang H, Yang B, Pang X, Jiang M, Cheng Y, Al-Nuaimi M K T, Zhang Y, Chen J and He S 2017 Multibeam antenna technologies for 5G wireless communications. IEEE Trans. Antennas Propag. 65: 6231–6249CrossRefGoogle Scholar
  18. 18.
    Dahri M H, Jamaluddin M H, Abbasi M I and Kamarudin M R 2017 A review of wideband reflectarray antennas for 5G communication systems. IEEE Access 5: 17803–17815CrossRefGoogle Scholar
  19. 19.
    Chaharmir M R and Shaker J 2008 Broadband reflectarray with combination of cross and rectangle loop elements. Electron. Lett. 44: 658–659CrossRefGoogle Scholar
  20. 20.
    Chaharmir M R, Shaker J and Gagnon N 2009 Broadband dual-band linear orthogonal polarisation reflectarray. Electron. Lett. 45: 13–14CrossRefGoogle Scholar
  21. 21.
    [21] Misran N, Cahill R and Fusco V F 2003 Design optimization of ring elements for broadband reflectarray antennas. IEE Proc. Antennas Propag. 150: 440–444CrossRefGoogle Scholar
  22. 22.
    Bialkowski M E and Sayidmarie K H 2008 Investigations into phase characteristics of a single-layer reflectarray employing patch or ring elements of variable size. IEEE Trans. Antennas Propag. 56: 3366–3372CrossRefGoogle Scholar
  23. 23.
    Elsharkawy R, Sebak A -R, Hindy M, Haraz O M, Saleeb A and El-Rabaie S M 2015 Polarization insensitive Ka-band reflectarray antenna. In: Proceedings of the AP-S, pp. 2483–2484Google Scholar
  24. 24.
    Elsharkawy R, Sebak A -R, Hindy M, Haraz O M, Saleeb A and El-Rabaie S M 2015 Single layer polarization independent reflectarray antenna for future 5G cellular applications. In: International Conference on Information and Communication Technology Research, pp. 9–12Google Scholar
  25. 25.
    CST-Computer Simulation Technology. Documentation.

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

    • 1
    Email author
    • 1
  • A -R SEBAK
    • 2
    • 3
    • 3
    • 4
    • 4
    • 4
    • 5
  1. 1.Electronics Research InstituteDokki, GizaEgypt
  2. 2.Department of Electrical and Computer EngineeringConcordia University MontrealMontrealCanada
  3. 3.Faculty of Electronic EngineeringMenoufia UniversityMenoufEgypt
  4. 4.KACST-TIC in Radio Frequency and Photonics for the e-Society (RFTONICS)King Saud UniversityRiyadhSaudi Arabia
  5. 5.Department of Electrical EngineeringKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations