Advertisement

Sādhanā

, 44:46 | Cite as

Planar liquid volume fraction and SMD distribution of Jatropha vegetable oil spray: effect of ethanol blending and GLR

  • Aniket P Kulkarni
  • D DeshmukhEmail author
Article
  • 11 Downloads

Abstract

This research paper presents the planar distribution of Sauter Mean Diameter (SMD) and liquid volume fraction in airblast sprays of Jatropha vegetable oil. The effect of ethanol blending at different gas to liquid mass ratios (GLRs) is presented. The planar SMD distributions are obtained using Structured Laser Illumination and Planar Imaging-Laser Sheet Drop sizing (SLIPI-LSD) and Particle/droplet Imaging Analysis (PDIA) techniques. The straight vegetable oil (SVO) spray showed poor atomization at GLR 1, which rose with increasing GLR. The blending of ethanol significantly improved the atomization of SVO even at GLR 1 condition. The liquid volume fraction distribution increased with higher GLR and with the increase in the percentage of ethanol in the blend. The impact of the increase in ethanol on drop size is small at GLR of 5. The E30 blend showed uniformly distributed liquid in the spray plane with uniform SMD distribution in the range of 50 \(\upmu \)m at GLR 5.

Keywords

SVO ethanol blend SLIPI-LSD liquid volume fraction SMD GLR 

Notes

Acknowledgements

The authors acknowledge the support from DST-SERB (Grant number: DST SB/S3/MMER/0028) for this work.

References

  1. 1.
    Gupta K K, Rehman A and Sarviya RM 2010 Bio-fuels for the gas turbine: a review. Renew. Sust. Energy Rev. 14: 2946–2955CrossRefGoogle Scholar
  2. 2.
    Ma F and Hanna M A 1999 Biodiesel production: a review. Bioresour. Technol. 70: 1–15CrossRefGoogle Scholar
  3. 3.
    Kang S B, Jin K J and Im Y H 2013 An experimental investigation of a direct burning of crude jatropha oil (CJO) and pitch in a commercial boiler system. Renew. Energy 54: 8–12CrossRefGoogle Scholar
  4. 4.
    Desmira N, Kuniyuki K, Morita S and Gupta A K 2014 In-situ spectroscopic monitoring of jatropha oil combustion properties. Renew. Energy 63: 775–778CrossRefGoogle Scholar
  5. 5.
    Shah P R, Gaitonde U N and Ganesh A 2018 Influence of soy-lecithin as bio-additive with straight vegetable oil on CI engine characteristics. Renew. Energy 115: 685–696CrossRefGoogle Scholar
  6. 6.
    Hashimoto N, Nishida H, Kimoto M, Tainaka K, Ikeda A and Umemoto S 2018 Effects of jatropha oil blending with C-heavy oil on soot emissions and heat absorption balance characteristics for boiler combustion. Renew. Energy 126: 924–932CrossRefGoogle Scholar
  7. 7.
    Lefebvre A 1988 Atomization and sprays. CRC Press, Boca RatonCrossRefGoogle Scholar
  8. 8.
    Fan Y, Hashimoto N, Nishida H and Ozawa Y 2014 Spray characterization of an air-assist pressure-swirl atomizer injecting high-viscosity jatropha oils. Fuel 121: 271–283CrossRefGoogle Scholar
  9. 9.
    Sivakumar D, Vankeswaram S K, Sakthikumar R, Raghunandan B N, Hu J T C and Sinha A K 2016 An experimental study on jatropha-derived alternative aviation fuel sprays from simplex swirl atomizer. Fuel 179: 36–44CrossRefGoogle Scholar
  10. 10.
    Lefebvre A 1980 Airblast atomization. Prog. Energy Combust. Sci. 6: 233261CrossRefGoogle Scholar
  11. 11.
    Basak A, Patra J, Ganguly R and Datta A 2013 Effect of transesterification of vegetable oil on liquid flow number and spray cone angle for pressure and twin fluid atomizers. Fuel 112: 347–354CrossRefGoogle Scholar
  12. 12.
    Avulapati M M and Ravikrishna R V 2015 Experimental studies on air-assisted atomization of jatropha pure plant oil. Atomization Spray. 25: 553–569CrossRefGoogle Scholar
  13. 13.
    Lujaji F C, Boateng A A, Schaffer M, Mtui P L and Mkilaha I S 2016 Spray atomization of bio-oil/ethanol blends with externally mixed nozzles. Exp. Therm. Fluid Sci. 71: 146–153CrossRefGoogle Scholar
  14. 14.
    Simmons B M and Agrawal A K 2012 Flow blurring atomization for low-emission combustion of liquid biofuels. Combust. Sci. Technol. 184: 660–675CrossRefGoogle Scholar
  15. 15.
    Kannaiyan K, Banda M V K and Vaidyanathan A 2016 Planar sauter mean diameter measurements in liquid centered swirl coaxial injector using laser induced fluorescence, Mie scattering and laser diffraction techniques. Acta Astronaut. 123: 257–270CrossRefGoogle Scholar
  16. 16.
    Betelin V B, Smirnov N N, Nikitin V F, Dushin V R, Kushnirenko A G and Nerchenko V A 2012 Evaporation and ignition of droplets in combustion chambers modeling and simulation. Acta Astronaut. 70: 23–35CrossRefGoogle Scholar
  17. 17.
    Panchasara H V and Agrawal A K 2010 Characteristics of preheated bio-oil sprays produced by an air-blast injector. In: Proceedings of ASME Turbo Expo 2010: Power for Land, Sea, and Air, American Society of Mechanical Engineers, pp. 619–629Google Scholar
  18. 18.
    Kulkarni A P and Deshmukh D 2019 Improvements in laser sheet dropsizing using numerical and experimental techniques Int. J. Multiph. Flow 110: 273–281, https://doi.org/10.1016/j.ijmultiphaseflow.2018.09.004CrossRefGoogle Scholar
  19. 19.
    Jain S, Somasundaram S and Anand T N C 2016 A fluorescent laser-diffuser arrangement for uniform backlighting. Meas. Sci. Technol. 27: 025406CrossRefGoogle Scholar
  20. 20.
    Kulkarni A P and Deshmukh D 2017 Spatial drop-sizing in airblast atomization—an experimental study. At. Spray. 27: 949–961CrossRefGoogle Scholar
  21. 21.
    Anand T N C 2014 PDIA\(_{-}\)v0.85 [online]. Available at: https://home.iitm.ac.in/anand/codes/ [accessed on 29-12-2014]
  22. 22.
    Kashdan J T, Shrimpton J S and Whybrew A 2003 Two-phase flow characterization by automated digital image analysis. Part 1: Fundamental principles and calibration of the technique. Part. Part. Syst. Charact. 20: 387–397CrossRefGoogle Scholar
  23. 23.
    Kashdan J T, Shrimpton J S, Booth H J and Whybrew A 2000 Assessment of particle characterisation via phase Doppler anemometry and automated particle image analysis techniques. In: Proceedings of the 10th International Symposium on Application of Laser Techniques to Fluid Mechanics, Lisbon, Portugal Google Scholar
  24. 24.
    Blaisot J B and Yon J 2005 Droplet size and morphology characterization for dense sprays by image processing: application to the diesel spray. Exp. Fluids 39: 977–994CrossRefGoogle Scholar
  25. 25.
    Kulkarni A P and Deshmukh D 2018 Planar liquid volume fraction measurements in airblast sprays using SLIPI technique with numerical corrections. Appl. Phys. B 124: 187CrossRefGoogle Scholar
  26. 26.
    Perrin W and Tarn W H 1990 CRC handbook of metal etchants. CRC Press, Boca Raton, pp. 106–108Google Scholar
  27. 27.
    Kristensson E 2012 Structured laser illumination planar imaging: SLIPI applications for spray diagnostics. PhD Thesis, Lund University, LundGoogle Scholar
  28. 28.
    Kristensson E, Araneo L, Berrocal E, Manin J, Richter M, Aldén M and Linne M 2011 Analysis of multiple scattering suppression using structured laser illumination planar imaging in scattering and fluorescing media. Opt. Express 19: 13647–13663CrossRefGoogle Scholar
  29. 29.
    Berrocal E, Kristensson E, Richter M, Linne M and Aldén M 2008 Application of structured illumination for multiple scattering suppression in planar laser imaging of dense sprays. Opt. Express 16: 17870–17881CrossRefGoogle Scholar
  30. 30.
    Berrocal E, Kristensson E, Hottenbach P, Aldén M and Grünefeld G 2012 Quantitative imaging of a non-combusting diesel spray using structured laser illumination planar imaging. Appl. Phys. B 109: 683–694CrossRefGoogle Scholar
  31. 31.
    Pastor J V, Lopez J J, Juliá J E and Benajes J V 2002 Planar laser-induced fluorescence fuel concentration measurements in isothermal diesel sprays. Opt. Express 10: 309–323CrossRefGoogle Scholar
  32. 32.
    Abu-Gharbieh R, Persson J L, Försth M, Rosén A, Karlström A and Gustavsson T 2000 Compensation method for attenuated planar laser images of optically dense sprays. Appl. Opt. 39: 1260–1267CrossRefGoogle Scholar
  33. 33.
    Deshmukh D and Ravikrishna R V 2013 A method for measurement of planar liquid volume fraction in dense sprays. Exp. Therm. Fluid Sci. 46: 254–258CrossRefGoogle Scholar
  34. 34.
    Holman J P and Gajda W J 2001 Experimental methods for engineers, vol. 2. New York: McGraw-HillGoogle Scholar
  35. 35.
    Vazquez G, Alvarez E and Navaza J M 1995 Surface tension of alcohol water + water from 20 to 50 degree C. J. Chem. Eng. Data 40: 611–614CrossRefGoogle Scholar
  36. 36.
    Deshmukh D 2011 Studies on atomization and sprays of plant oil biofuels using laser-based diagnostics. PhD Thesis, Indian Institute of Science Bangalore, BangaloreGoogle Scholar
  37. 37.
    Liu C, Liu F, Mao Y, Mu Y and Xu G 2014 Experimental investigation of performance of an air blast atomizer by planar laser sheet imaging technique. J. Eng. Gas Turb. Power 136: 021601CrossRefGoogle Scholar
  38. 38.
    Lefebvre A 1992 Energy considerations in twin-fluid atomization. J. Eng. Gas Turb. Power 114: 89–96CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Spray and Combustion Laboratory, Discipline of Mechanical EngineeringIndian Institute of Technology IndoreIndoreIndia

Personalised recommendations