Advertisement

Sādhanā

, 44:36 | Cite as

Analysis of generalized continual-clamp and split-clamp PWM schemes for induction motor drive

  • Soumitra DasEmail author
  • V S S Pavan Kumar Hari
  • Arun Kumar
  • G Narayanan
Article
  • 30 Downloads

Abstract

Continual-clamp pulse width modulation (CCPWM) clamps each phase of a three-phase inverter to one of the two dc buses continually for \(60^{\circ }\) duration in each half of the fundamental cycle. Split-clamp pulse width modulation (SCPWM) divides the \(60^{\circ }\) clamping interval into two sub-intervals, which are not necessarily equal, and falling in two different quarter cycles. Whether continual clamp or split clamp, the positioning of the clamping interval in case of CCPWM, and the ratio of splitting the clamping interval in SCPWM – all influence the waveform quality of the inverter output. This paper derives analytically closed-form expressions for the total RMS harmonic distortion factor and torque ripple factor pertaining to CCPWM with any arbitrary position of the clamping interval (i.e., generalized CCPWM) and also corresponding to SCPWM with any arbitrary ratio of splitting of the clamping interval (i.e., generalized SCPWM). The analytical results are well supported by experimental results on 3-hp and 5-hp induction motor drives.

Keywords

Analytically derived closed-form expression bus-clamping pulse width modulation continual-clamp PWM discontinuous PWM harmonic analysis harmonic distortion split-clamp PWM pulsating torque voltage source inverter waveform quality 

References

  1. 1.
    Handley P G and Boys J T 1992 Practical real-time PWM modulators: an assessment. IEE Proc. B 139(2): 96–102Google Scholar
  2. 2.
    Depenbrock M 1977 Pulse width control of a 3-phase inverter with nonsinusoidal phase voltages. In: IEEE International Semiconductor Power Converter Conference Record, pp. 399–403Google Scholar
  3. 3.
    Madhu M and De G 1987 Novel control strategy for sinusoidal PWM inverters. IEEE Trans. Ind. Appl. IA-23(3): 561–566Google Scholar
  4. 4.
    Katsunori T, Yasumasa O and Hisaichi I 1988 PWM technique for power MOSFET inverter. IEEE Trans. Power Electron. 3(3): 328–334CrossRefGoogle Scholar
  5. 5.
    van der Broeck H W 1991 Analysis of the harmonics in voltage fed inverter drives caused by PWM schemes with discontinuous switching operation. In: Proceedings of the EPE 91 Conference, Firenze, Italy, pp. 261–266Google Scholar
  6. 6.
    Kolar J W, Ertl H and Franz C Z 1991 Influence of the modulation method on the conduction and switching losses of a PWM converter system. IEEE Trans. Ind. Appl. 21(6): 1063–1075CrossRefGoogle Scholar
  7. 7.
    Holmes D G 1996 The significance of zero space vector placement for carrier-based PWM schemes. IEEE Trans. Ind. Appl. 32(5): 1122–1129CrossRefGoogle Scholar
  8. 8.
    Fukuda S and Suzuki K 1997 Harmonic evaluation of carrier-based PWM methods using harmonic distortion determining factor. In: Proceedings of IEEE PCC-1997, Nagaoka, Japan, pp. 259–264Google Scholar
  9. 9.
    Halasz S and Zacharov A 1998 Voltage spectra of two-phase PWM techniques in inverter fed ac drives. In: Proceedings of the IEEE International Symposium on Industrial Electronics, Pretoria, South Africa, pp. 202–207Google Scholar
  10. 10.
    Hava A M, Kerman R J and Lipo T A 1998 A high performance generalized discontinuous PWM algorithm. IEEE Trans. Ind. Appl. 34(5): 1059–1071CrossRefGoogle Scholar
  11. 11.
    Hava A M, Kerman R J and Lipo T A 1999 Simple analytical and graphical method for carrier based PWM-VSI drives. IEEE Trans. Power Electron. 14(1): 49–61CrossRefGoogle Scholar
  12. 12.
    Narayanan G and Ranganathan V T 2002 Two novel synchronized bus-clamping PWM strategies based on space vector approach for high power drives. IEEE Trans. Power Electron. 17(1): 84–93CrossRefGoogle Scholar
  13. 13.
    Narayanan G and Ranganathan V T 2002 Extension of operation of space vector PWM strategies with low switching frequencies using different over-modulation algorithms. IEEE Trans. Power Electron. 17(5): 788–798CrossRefGoogle Scholar
  14. 14.
    Holmes D G and Lipo T A 2003 Pulse width modulation for power converters – principles and practice. Piscataway, NJ: IEEE PressGoogle Scholar
  15. 15.
    Zhao D, Narayanan G and Ayyanar R 2004 Switching loss characteristics of sequences involving active state division in space vector based PWM. In: Proceedings of IEEE-APEC04, pp. 479–485Google Scholar
  16. 16.
    Narayanan G and Ranganathan V T 2005 Analytical evaluation of harmonic distortion in PWM ac drives using the notion of stator flux ripple. IEEE Trans. Power Electron. 20(2): 466–474CrossRefGoogle Scholar
  17. 17.
    Narayanan G, Krishnamurthy H K, Zhao D and Ayyanar R 2006 Advanced bus-clamping PWM techniques based on space vector approach. IEEE Trans. Power Electron. 21(4): 974–984CrossRefGoogle Scholar
  18. 18.
    Asiminoaei L, Rodrguez P and Blaabjerg F Application of discontinuous PWM modulation in active power filters. IEEE Trans. Power Electron. 23(4): 1692–2006Google Scholar
  19. 19.
    Narayanan G, Zhao D, Krishnamurthy H K, Ayyanar R, and Ranganathan V T 2008 Space vector based hybrid PWM techniques for reduced current ripple. IEEE Trans. Ind. Electron. 55(4): 1614–1627CrossRefGoogle Scholar
  20. 20.
    Basu K, Prasad J S S and Narayanan G 2009 Minimization of torque ripple in PWM AC drives. IEEE Trans. Ind. Electron. 56(2): 553–558CrossRefGoogle Scholar
  21. 21.
    Bhavsar T and Narayanan G 2009 Harmonic analysis of advanced bus-clamping PWM techniques. IEEE Trans. Power Electron. 24(10): 2347–2352CrossRefGoogle Scholar
  22. 22.
    Zhao D, Hari V S S P K, Narayanan G and Ayyanar R 2010 Space-vector-based hybrid pulsewidth modulation techniques for reduced harmonic distortion and switching loss. IEEE Trans. Power Electron. 25(3): 760–774CrossRefGoogle Scholar
  23. 23.
    Wu Y, Shafi M A, Knight A M and McMahon R A 2011 Comparison of the effects of continuous and discontinuous PWM schemes on power losses of voltage-sourced inverters for induction motor drives. IEEE Trans. Power Electron. 26(1): 182–191CrossRefGoogle Scholar
  24. 24.
    Nguyen T G, Hobraiche J, Patin N, Friedrich G and Vilain J P 2011 A direct digital technique implementation of general discontinuous pulse width modulation strategy. IEEE Trans. Ind. Electron. 58(9): 4445–4454CrossRefGoogle Scholar
  25. 25.
    Zhang D, Wang F, Burgos R and Boroyevich D 2012 Total flux minimization control for integrated interphase inductors in paralleled, interleaved three-phase two-level voltage-source converters with discontinuous space-vector modulation. IEEE Trans. Power Electron. 27(4): 1679–1688CrossRefGoogle Scholar
  26. 26.
    Hari V S S P K and Narayanan G 2012 Space-vector-based hybrid pulse width modulation technique to reduce line current distortion in induction motor drives. IET Trans. Power Electron. 5(8): 1463–1471CrossRefGoogle Scholar
  27. 27.
    Hou C C, Shih C C, Cheng P T and Hava A M 2013 Common-mode voltage reduction pulsewidth modulation techniques for three-phase grid-connected converters. IEEE Trans. Power Electron. 28(4): 1971–1979CrossRefGoogle Scholar
  28. 28.
    An S L, Sun X D, Zhang Q, Zhong Y R and Ren B Y 2013 Study on the novel generalized discontinuous svpwm strategies for three-phase voltage source inverters. IEEE Trans. Ind. Inform. 9(2): 781–789CrossRefGoogle Scholar
  29. 29.
    Prasad J S S and Narayanan G 2014 Minimum switching loss pulse width modulation for reduced power conversion loss in reactive power compensators. IET Power Electron. 7(3): 545–551CrossRefGoogle Scholar
  30. 30.
    Lee J S and Lee K B 2015 Carrier-based discontinuous PWM method for Vienna rectifiers. IEEE Trans. Power Electron. 30(6): 2896–2900CrossRefGoogle Scholar
  31. 31.
    Saritha B, Binojkumar A C and Narayanan G 2016 Experimental comparison of conventional and bus-clamping PWM methods based on electrical and acoustic noise spectra of induction motor drives. IEEE Trans. Ind. Appl. 52(5): 4061–4073CrossRefGoogle Scholar
  32. 32.
    Gendrin M, Gauthier J Y and Shi X L 2017 A predictive hybrid pulse-width-modulation technique for active-front-end rectifiers. IEEE Trans. Power Electron. 32(7): 5487–5496CrossRefGoogle Scholar
  33. 33.
    Das S, Binojkumar A C and Narayanan G 2014 Analytical evaluation of harmonic distortion factor corresponding to generalized advanced bus-clamping pulse width modulation. IET Power Electron. 7(12): 3072–3082CrossRefGoogle Scholar
  34. 34.
    Leonhard W 2001 Control of electrical drives. Berlin, Heidelberg: Springer-VerlagGoogle Scholar
  35. 35.
    Hari V S S P K and Narayanan G 2013 A quick simulation tool forinduction motor drives controlled using advanced space-vector-basedPWM techniques. In: Proceedings of the National Power Electronics Conference (NPEC), Kanpur, IndiaGoogle Scholar
  36. 36.
    Venugopal S and Narayanan G 2005 Design of FPGA based digitalplatform for control of power electronics systems. In: Proceedings of the National Power Electronics Conference (NPEC), Kharagpur, IndiaGoogle Scholar
  37. 37.
    Vas P 1998 Sensorless vector and direct torque control. Oxford: Oxford University PressGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Department of Electrical and Electronics EngineeringNational Institute of Technology GoaGoaIndia
  2. 2.Department of Energy Science and EngineeringIndian Institute of Technology BombayMumbaiIndia
  3. 3.MumbaiIndia
  4. 4.Department of Electrical EngineeringIndian Institute of ScienceBangaloreIndia

Personalised recommendations