, 44:58 | Cite as

A novel hybrid TOPSIS-PSI approach for material selection in marine applications

  • Sukriti YadavEmail author
  • Vimal Kumar Pathak
  • Swati Gangwar


Selection of material in engineering design process is a difficult and elusive task due to enormous number of dissimilar materials availability. For effective selection of materials, the designers have to take into account a number of definite qualitative and quantitative criteria. In the same context, this paper proposes a hybrid TOPSIS-PSI approach for effective material selection in marine applications. In this paper, the selection index value has been calculated by using logical combination of PSI and TOPSIS algorithm and these values have been ranked in ascending or descending order. The highest preference selection index value has been taken as the best alternative for the marine application. To prove the effectiveness of the proposed hybrid TOPSIS-PSI algorithm, two practical examples are considered and the result shows that the proposed procedure provides satisfactory results when compared with past literature. Furthermore, hybrid procedure is performed for selection of best wt.% combination among hybrid aluminum nanocomposites for marine applications based on its physical, mechanical and corrosive behavior. The result reveals that 9 wt.% and 6 wt.% reinforced hybrid aluminum nanocomposites have optimum combination of all physical, mechanical and corrosion properties, respectively according to hybrid TOPSIS-PSI approach.


PSI optimization TOPSIS method hybrid method material selection 


  1. 1.
    Ashby M F, Brechet Y J M, Cebon D and Salvo L 2004 Selection strategies for materials and processes. Materials & Design 25(1): 51–67CrossRefGoogle Scholar
  2. 2.
    Edwards K L 2005 Selecting materials for optimum use in engineering components. Materials & Design 26(5): 469–473MathSciNetCrossRefGoogle Scholar
  3. 3.
    Thakker A, Jarvis J, Buggy M and Sahed A 2008 A novel approach to materials selection strategy case study: Wave energy extraction impulse turbine blade. Materials & Design 29(10): 1973–1980CrossRefGoogle Scholar
  4. 4.
    Chatterjee P and Chakraborty S 2012 Material selection using preferential ranking methods. Materials & Design 35: 384–393CrossRefGoogle Scholar
  5. 5.
    Edwards K L 2011 Materials influence on design: a decade of development. Materials & Design 32(3): 1073–1080CrossRefGoogle Scholar
  6. 6.
    Devaraju A, Kumar A, Kumaraswamy A and Kotiveerachari B 2013 Influence of reinforcements (SiC and Al2O3) and rotational speed on wear and mechanical properties of aluminum alloy 6061-T6 based surface hybrid composites produced via friction stir processing. Materials & Design 51: 331–341CrossRefGoogle Scholar
  7. 7.
    Seah K H W, Tucci A, Sharma S C, Girish B M and Kamath R 1995 Mechanical properties of cast lead alloy/silicon carbide particulate composites. Materials & Design 16(6): 367–371CrossRefGoogle Scholar
  8. 8.
    Dinaharan I, Murugan N and Parameswaran S 2011 Influence of in situ formed ZrB2 particles on microstructure and mechanical properties of AA6061 metal matrix composites. Materials Science and Engineering: A 528(18): 5733–5740.CrossRefGoogle Scholar
  9. 9.
    McCafferty E 2010 Societal Aspects of Corrosion. In: Introduction to Corrosion Science New York, NY: Spreinger pp. 1–11CrossRefGoogle Scholar
  10. 10.
    Bobić B, Mitrović S, Babić M and Bobić I 2010 Corrosion of metal-matrix composites with aluminium alloy substrate. Tribology in Industry 32(1): 3–11Google Scholar
  11. 11.
    Chamoli S 2015 Preference selection index approach for optimization of V down perforated baffled roughened rectangular channel. Energy 93: 1418–1425CrossRefGoogle Scholar
  12. 12.
    Attri R and Grover S 2015 Application of preference selection index method for decision making over the design stage of production system life cycle. Journal of King Saud University-Engineering Sciences 27(2): 207–216CrossRefGoogle Scholar
  13. 13.
    Bharath V, Nagaral M, Auradi V and Kori S A 2014 Preparation of 6061Al-Al2O3 MMC’s by Stir Casting and Evaluation of Mechanical and Wear Properties. Procedia Materials Science 6: 1658–1667CrossRefGoogle Scholar
  14. 14.
    Bhandare R G and Sonawane P M 2013 Preparation of aluminium matrix composite by using stir casting method. International Journal of Engineering and Advanced Technology 3(2): 61–65Google Scholar
  15. 15.
    Khorshidi R, and Hassani A 2013 Comparative analysis between TOPSIS and PSI methods of materials selection to achieve a desirable combination of strength and workability in Al/SiC composite. Materials & Design (1980–2015) 52: 999–1010CrossRefGoogle Scholar
  16. 16.
    Diyaley S, Shilal P, Shivakoti I, Ghadai R K and Kalita K 2017 PSI and TOPSIS Based Selection of Process Parameters in WEDM. Periodica Polytechnica Engineering Mechanical Engineering 61(4): 255CrossRefGoogle Scholar
  17. 17.
    Ashby M F and Cebon D 1993 Materials selection in mechanical design. Le Journal de Physique IV 3(C7): C7-1Google Scholar
  18. 18.
    Ashby M F and Johnson K 2013 Materials and design: the art and science of material selection in product design. Butterworth-HeinemannGoogle Scholar
  19. 19.
    Maniya K and Bhatt M G 2010 A selection of material using a novel type decision-making method: Preference selection index method. Materials & Design 31(4): 1785–1789CrossRefGoogle Scholar
  20. 20.
    Shanian A and Savadogo O 2006 A material selection model based on the concept of multiple attribute decision making. Materials & Design 27(4): 329–337CrossRefGoogle Scholar
  21. 21.
    Karande P, Gauri S K and Chakraborty S 2013 Applications of utility concept and desirability function for materials selection. Materials & Design 45: 349–358CrossRefGoogle Scholar
  22. 22.
    Zhou C C, Yin G F and Hu X B 2009 Multi-objective optimization of material selection for sustainable products: artificial neural networks and genetic algorithm approach. Materials & Design 30(4): 1209–1215CrossRefGoogle Scholar
  23. 23.
    Chan J W and Tong T K 2007 Multi-criteria material selections and end-of-life product strategy: Grey relational analysis approach. Materials & Design 28(5): 1539–1546CrossRefGoogle Scholar
  24. 24.
    Mansor M R, Sapuan S M, Zainudin E S, Nuraini A A and Hambali A 2013 Hybrid natural and glass fibers reinforced polymer composites material selection using Analytical Hierarchy Process for automotive brake lever design. Materials & Design 51: 484–492CrossRefGoogle Scholar
  25. 25.
    Maity SR, Chatterjee P and Chakraborty S 2012 Cutting tool material selection using grey complex proportional assessment method. Materials & Design (1980–2015) 36: 372–378CrossRefGoogle Scholar
  26. 26.
    Chatterjee P, Athawale, V M and Chakraborty S 2011 Materials selection using complex proportional assessment and evaluation of mixed data methods. Materials & Design 32(2): 851–860CrossRefGoogle Scholar
  27. 27.
    Chakraborty S 2011 Applications of the MOORA method for decision making in manufacturing environment. The International Journal of Advanced Manufacturing Technology 54(9–12): 1155–1166CrossRefGoogle Scholar
  28. 28.
    Pathak V K and Singh A 2017 Optimization of morphological process parameters in contactless laser scanning system using modified particle swarm algorithm. Measurement 109: 27–35CrossRefGoogle Scholar
  29. 29.
    Gangwar S, Kukshal V, Patnaik A and Singh T 2012 Computational optimization of TiO2 filled A384 alloy composites in erosive environment. International Journal of Computational Materials Science and Engineering 1(03): 1250025CrossRefGoogle Scholar
  30. 30.
    Athawale V M and Chakraborty S 2012 Material selection using multi-criteria decision-making methods: a comparative study. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 226(4): 266–285CrossRefGoogle Scholar
  31. 31.
    Vahdani B, Zandieh M and Tavakkoli-Moghaddam R 2011 Two novel FMCDM methods for alternative-fuel buses selection. Applied Mathematical Modelling 35(3): 1396–1412zbMATHCrossRefGoogle Scholar
  32. 32.
    Behzadian M, Otaghsara S K, Yazdani M and Ignatius J (2012). A state-of the-art survey of TOPSIS applications. Expert Systems with Applications 39(17): 13051–13069CrossRefGoogle Scholar
  33. 33.
    Yue Z 2011 A method for group decision-making based on determining weights of decision makers using TOPSIS. Applied Mathematical Modelling 35(4): 1926–1936MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Çalışkan H, Kurşuncu B, Kurbanoğlu C and Güven Ş Y 2013 Material selection for the tool holder working under hard milling conditions using different multi criteria decision making methods. Materials & Design 45: 473–479CrossRefGoogle Scholar
  35. 35.
    Rao R V 2007 Decision making in the manufacturing environment: using graph theory and fuzzy multiple attribute decision making methods. Springer Science & Business Media Google Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  • Sukriti Yadav
    • 1
    Email author
  • Vimal Kumar Pathak
    • 2
  • Swati Gangwar
    • 1
  1. 1.Department of Mechanical EngineeringMadan Mohan Malaviya University of TechnologyGorakhpurIndia
  2. 2.Department of Mechanical EngineeringManipal University JaipurJaipurIndia

Personalised recommendations