Advertisement

Sādhanā

, 44:33 | Cite as

High-efficiency WLANs for dense deployment scenarios

  • B T VIJAYEmail author
  • B MALARKODI
Article
  • 25 Downloads

Abstract

In this article, we review the latest technical attributes such as orthogonal frequency division multiple access (OFDMA), multi-user MIMO (MU-MIMO) and enhanced clear channel assessment (CCA) for better spatial reuse used in the 802.11ax amendment to the 802.11 standard that leads to PHY and MAC enhancements for high-density scenarios of access points (APs). IEEE 802.11ax, also referred to as high-efficiency wireless local area network (WLAN) (HEW), provides mechanisms to thoroughly utilize the unlicensed spectrum bands (2.4 and 5 GHz) and strengthen the user experience. The functional requirements of HEW are stressed on interactive video transmission latency and access efficiency to meet quality of service (QoS) requirements. Finally, we investigate three configurations—MU-MIMO, OFDMA and combination of both or mixed mode—for 4-user AP transmission schemes in 802.11ax. The performance of the MU schemes varies with packet size and operating SNR. OFDMA is more efficient than MU-MIMO at low SNRs for all packet sizes, which means 5th percentile stations (STAs) can get desired throughput.

Keywords

CCA high-efficiency WLAN (HEW) spatial reuse MAC multi-user (MU) OFDMA throughput 802.11ax efficiency 

References

  1. 1.
    Ramaiyan V 2009 Topics in modeling, analysis and optimization of wireless networks. Ph.D. thesis, Indian Institute of Science, BengaluruGoogle Scholar
  2. 2.
    Perahia E and Stacey R 2013 Next generation wireless LANs: 802.11n and 802.11ac, 2nd ed. Cambridge University Press, IndiaGoogle Scholar
  3. 3.
    Palit R, Naik K and Singh A 2012 Anatomy of WiFi access traffic of smartphones and implications for energy saving techniques. International Journal of Energy, Information and Communication 3(1): 1–16Google Scholar
  4. 4.
    Omar H A, Abboud K, Cheng N, Malekshan K R, Gamage A T and Zhuang W 2016 A survey on high efficiency wireless local area networks: next generation WiFi. IEEE Communications Surveys & Tutorials 18(4): 2315–2344CrossRefGoogle Scholar
  5. 5.
    Sharon O and Alpert Y 2017 Single user MAC level throughput comparison: IEEE 802.11ax vs. IEEE 802.11ac. Wireless Sensor Network 9: 166–177CrossRefGoogle Scholar
  6. 6.
    Vijay B T and Malarkodi B 2019 MAC improvements for very high throughput WLANs. International Journal of Communication Networks and Distributed Systems 22(1): 74–97CrossRefGoogle Scholar
  7. 7.
    IEEE P802.11 – Task Group ax 2016 Group information update: status of project IEEE 802.11ax. High Efficiency Wireless LAN Task GroupGoogle Scholar
  8. 8.
    Afaqui M S, Garcia-Villegas E and Lopez-Aguilera E 2017 IEEE 802.11ax: challenges and requirements for future high efficiency WiFi. IEEE Wireless Communications 24(3): 130–137CrossRefGoogle Scholar
  9. 9.
    Yang D X, Guo Y and Aboul-Magd O 2017 802.11ax: the coming new WLAN system with more than 4 × MAC throughput enhancement. In: Proceedings of the 86th IEEE Vehicular Technology Conference (VTC-Fall), pp. 1–5Google Scholar
  10. 10.
    Bellalta B 2016 IEEE 802.11ax: High-efficiency WLANS. IEEE Wireless Communications 23(1): 38–46CrossRefGoogle Scholar
  11. 11.
    IEEE Standard for Information Technology 2016 Telecommunications and information exchange between systems local and metropolitan area networks—specific requirements part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications. IEEE Std 802.11-2016 (Revision of IEEE Std 802.11-2012)Google Scholar
  12. 12.
    Deng D J, Lin Y P, Yang X, Zhu J, Li Y B, Luo J and Chen K C 2017 IEEE 802.11ax: Highly efficient WLANs for intelligent information infrastructure. IEEE Communications Magazine 55(12): 52–59CrossRefGoogle Scholar
  13. 13.
    Ali R, Kim S W, Kim B S and Park Y 2018 Design of MAC layer resource allocation schemes for IEEE 802.11ax: future directions. IETE Technical Review 35(1): 28–52CrossRefGoogle Scholar
  14. 14.
    Cheng N and Shen X S 2017 Next-generation high-efficiency WLAN. In: Proceedings of the 5G Mobile Communications. Cham: Springer, pp. 651–675Google Scholar
  15. 15.
    Zhang Y, Li B, Yang M, Yan Z and Zuo X 2017 An OFDMA-based joint reservation and cooperation MAC protocol for the next generation WLAN. Wireless Networks,  https://doi.org/10.1007/s11276-017-1567-1, pp. 1–15
  16. 16.
    Zhou H, Li B, Yan Z and Yang M 2017 A channel bonding based QoS-aware OFDMA MAC protocol for the next generation WLAN. Mobile Networks and Applications 22(1): 19–29CrossRefGoogle Scholar
  17. 17.
    Kosek-Szott K 2018 Improving DL MU-MIMO performance in IEEE 802.11ac networks through decoupled scheduling. Wireless Networks 24(8): 3113–3127CrossRefGoogle Scholar
  18. 18.
    Bellalta B and Kosek-Szott K 2017 AP-initiated multi-user transmissions in IEEE 802.11ax WLANs. arXiv: 1702.05397Google Scholar
  19. 19.
    Khorov E, Kiryanov A, Krotov A, Gallo P, Garlisi D, Tinnirello I and Kiryanov A 2016 Joint usage of dynamic sensitivity control and time division multiple access in dense 802.11ax networks. In: Proceedings of the International Workshop on Multiple Access Communications. Cham: Springer, pp. 57–71Google Scholar
  20. 20.
    Faridi A, Bellalta B and Checco A 2017 Analysis of dynamic channel bonding in dense networks of WLANs. IEEE Transactions on Mobile Computing 16(8): 2118–2131CrossRefGoogle Scholar
  21. 21.
    Yang B, Li B, Yan Z and Yang M 2018 A channel reservation based cooperative multi-channel MAC protocol for the next generation WLAN. Wireless Networks 24(2): 627–646CrossRefGoogle Scholar
  22. 22.
    Deng D J, Lien S Y, Lee J and Chen K C 2016 On quality-of-service provisioning in IEEE 802.11ax WLANs. IEEE Access 4: 6086–6104CrossRefGoogle Scholar
  23. 23.
    Aijaz A and Kulkarni P 2017 Simultaneous transmit and receive operation in next generation IEEE 802.11 WLANs: a MAC protocol design approach. IEEE Wireless Communications 24(6): 128–135CrossRefGoogle Scholar
  24. 24.
    IEEE 802.11-15/0333r0 2015 Throughput comparison of some multi-user schemes in 802.11ax. IEEE TGaxGoogle Scholar
  25. 25.
    Khorov E, Loginov V and Lyakhov A 2016 Several EDCA parameter sets for improving channel access in IEEE 802.11ax networks. In: Proceedings of the International Symposium on Wireless Communication Systems (ISWCS), Poznan, pp. 419–423Google Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringNational Institute of TechnologyTiruchirappalliIndia

Personalised recommendations