Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Upper bound for the first nonzero eigenvalue related to the p-Laplacian

  • 17 Accesses


Let M be a closed hypersurface in \({\mathbb {R}}^{n}\) and \(\Omega \) be a bounded domain such that \(M= \partial \Omega \). In this article, we obtain an upper bound for the first nonzero eigenvalue of the following problems:

  1. (1)

    Closed eigenvalue problem:

    $$\begin{aligned} \Delta _p u = \lambda _{p} \ |u|^{p-2} \ u \quad \text{ on } {M}. \end{aligned}$$
  2. (2)

    Steklov eigenvalue problem:

    $$\begin{aligned} {\begin{array}{ll} \Delta _{p}u = 0 &{} \text{ in } \Omega ,\\ |\nabla u|^{p-2} \frac{\partial u}{\partial \nu } = \mu _{p} \ |u|^{p-2} \ u &{} \text{ on } M . \end{array}} \end{aligned}$$

These bounds are given in terms of the first nonzero eigenvalue of the usual Laplacian on the geodesic ball of the same volume as of \(\Omega \).

This is a preview of subscription content, log in to check access.


  1. 1.

    Binoy R and Santhanam G, Sharp upper bound and a comparison theorem for the first nonzero Steklov eigenvalue, J. Ramanujan Math. Soc. 29(2) (2014) 133–154

  2. 2.

    Bleecker D and Weiner J, Extrinsic bounds on \(\lambda _1\) of \(\Delta \) on a compact manifold, Comment. Math. Helv. 51 (1976) 601–609

  3. 3.

    Chen H and Wei G, Reilly-type inequalities for \(p\)-Laplacian on submanifolds in space forms, arXiv:1806.09061 (2018)

  4. 4.

    Du F and Mao J, Reilly-type inequalities for \(p\)-Laplacian on compact Riemannian manifolds, Frontiers of Mathematics in China 10(3) (2015) 583–594

  5. 5.

    Escobar J F, The geometry of the first nonzero Stekloff eigenvalue, J. Funct. Anal. 150(2) (1997) 544–556

  6. 6.

    Escobar J F, An isoperimetric inequality and the first Steklov eigenvalue, J. Funct. Anal. 165(1) (1999) 101–116

  7. 7.

    Escobar J F, A comparison theorem for the first nonzero Steklov eigenvalue, J. Funct. Anal. 178(1) (2000) 143–155

  8. 8.

    Grosjean J F, Upper bounds for the first eigenvalue of the Laplacian on compact submanifolds, Pacific. J. Math. 206 (2002) 93–112

  9. 9.

    Heintze E, Extrinsic upper bounds for \(\lambda _1\), Math. Ann. 280 (1988) 389–402

  10. 10.

    Payne L E, Some isoperimetric inequalities for Harmonic functions, SIAM J. Math. Anal. 1 (1970) 354–359

  11. 11.

    Reilly R, On the first eigenvalue of the Laplacian for compact submanifold of Euclidean space, Comment. Math. Helv. 52 (1977) 525–533

  12. 12.

    Santhanam G, A sharp upper bound for the first eigenvalue of the Laplacian of compact hypersurfaces in rank-\(1\) symmetric spaces, Proc. Indian Acad. Sci. (Math. Sci.) 117(3) (2007) 307–315

  13. 13.

    Santhanam G, Isoperimetric upper bounds for the first eigenvalues, Proc. Indian Acad. Sci. (Math. Sci.) 122(3) (2012) 375–384

  14. 14.

    Torné O, Steklov problem with an indefinite weight for the \(p\)-Laplacian, Electronic J. Differ. Equ. 2005(87) (2005) 1–8

  15. 15.

    Weinstock R, Inequalities for a classical eigenvalue problem, Rational Mech. Anal. 3 (1954) 745–753

Download references


The author would like to thank Prof. G. Santhanam for discussions and many helpful comments on the manuscript. She also wishes to thank Prof. Bruno Colbois for pointing out a mistake in Theorem 1 in the original manuscript.

Author information

Correspondence to Sheela Verma.

Additional information

Communicating Editor: S Kesavan

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Verma, S. Upper bound for the first nonzero eigenvalue related to the p-Laplacian. Proc Math Sci 130, 21 (2020). https://doi.org/10.1007/s12044-019-0529-1

Download citation


  • p-Laplacian
  • closed eigenvalue problem
  • Steklov eigenvalue problem
  • center-of-mass

2010 Mathematics Subject Classification

  • 35P15
  • 58J50