Spectrum of some weighted composition operators

  • Malihe Farzi Haromi
  • Mahmood Haji ShaabaniEmail author


In this paper, we determine the spectrum of power compact weighted composition operators \(C_{\psi ,\varphi }\), on the weighted Hardy spaces. Moreover, we find the spectrum and essential spectrum of \(C_{\psi ,\varphi }\) on \(A^{2}_{\alpha }\) when \(\varphi \) is a non-automorphic linear-fractional self-map of \({\mathbb {D}}\).


Hardy space weighted Bergman spaces weighted composition operator spectrum essential spectrum 

2000 Mathematics Subject Classification

Primary: 47B33 Secondary: 47A10 


  1. 1.
    Bourdon P S, Spectra of some composition operators and associated weighted composition operators, J. Oper. Theory 67 (2012) 537–560MathSciNetzbMATHGoogle Scholar
  2. 2.
    Bourdon P S, Spectra of composition operators with symbols in \(S(2)\), J. Oper. Theory 75 (2016) 21–48MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bourdon P S, Levi D, Narayan S K and Shapiro J H, Which linear-fractional composition operators are essentially normal?, J. Math. Anal. Appl. 280 (2003) 30–53MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bourdon P S and Narayan S, Normal weighted composition operators on the Hardy space \(H^2(U)\), J. Math. Anal. Appl. 367 (2010) 278–286MathSciNetCrossRefGoogle Scholar
  5. 5.
    Caughran J G and Schwartz H J, Spectra of compact composition operators, Proc. Am. Math. Soc. 51 (1975) 127–130MathSciNetCrossRefGoogle Scholar
  6. 6.
    Clifford J H and Dabkowski M G, Singular values and Schmidt pairs of composition operators on the Hardy space, J. Math. Anal. Appl. 305(2) (2005) 183–196MathSciNetCrossRefGoogle Scholar
  7. 7.
    Conway J B, A Course in Functional Analysis, second edition (1990) (New York: Springer)zbMATHGoogle Scholar
  8. 8.
    Conway J B, A Course in Operator Theory, Graduate Stud. Math., vol. 21, Amer. Math. Soc. (2000) (Providence, RI)Google Scholar
  9. 9.
    Cowen C C, Composition operators on \(H^2\), J. Oper. Theory 9 (1983) 77–106zbMATHGoogle Scholar
  10. 10.
    Cowen C C, Linear fractional composition operators on \(H^{2}\), Integr. Equ. Oper. Th. 11 (1988) 151–160CrossRefGoogle Scholar
  11. 11.
    Cowen C C, Gunatillake G and Ko E, Hermitian weighted composition operators and Bergman extermal functions, Complex Anal. Oper. Th. 7 (2013) 69–99CrossRefGoogle Scholar
  12. 12.
    Cowen C C, Jung S and Ko E, Normal and cohyponormal weighted composition operators on \(H^{2}\), Oper. Th. Adv. Appl. 240 (2014) 69–85zbMATHGoogle Scholar
  13. 13.
    Cowen C C and Ko E, Hermitian weighted composition operators on weighted Hardy spaces, Trans. Amer. Math. Soc. 362 (2010) 5771–5801MathSciNetCrossRefGoogle Scholar
  14. 14.
    Cowen C C, Ko E, Thompson D and Tian F, Spectra of some weighted composition operators on \(H^2\), Acta Sci. Math. (Szeged) 82 (2016) 221–234MathSciNetCrossRefGoogle Scholar
  15. 15.
    Cowen C C and MacCluer B D, Composition Operators on Spaces of Analytic Functions, Studies in Advanced Mathematics (1995) (Boca Raton, FL: CRC Press)Google Scholar
  16. 16.
    Deddens J A, Analytic Toeplitz and composition operators, Canad. J. Math. 24 (1972) 859–865MathSciNetCrossRefGoogle Scholar
  17. 17.
    Fatehi M and Haji Shaabani M, Some essentially normal weighted composition operators on the weighted Bergman spaces, Complex Var. Elliptic Equ. 60 (2015) 1205–1216MathSciNetCrossRefGoogle Scholar
  18. 18.
    Fatehi M, Haji Shaabani M and Thompson D, Quasinormal and hyponormal weighted composition operators on \(H^2\) and \(A^{2}_{\alpha }\) with linear-fractional compositional symbol, Complex Anal. Oper. Th. 12 (2018) 1767–1778CrossRefGoogle Scholar
  19. 19.
    Gunatillake G, Spectrum of a compact weighted composition operator, Proc. Am. Math. Soc. 135(2) (2007) 461–467MathSciNetCrossRefGoogle Scholar
  20. 20.
    Gunatillake G, Invertible weighted composition operators, J. Funct. Anal. 261 (2011) 831–860MathSciNetCrossRefGoogle Scholar
  21. 21.
    Hyvärinen O, Lindström M, Nieminen I and Saukko E, Spectra of weighted composition operators with automorphic symbols, J. Funct. Anal. 265 (2013) 1749–1777MathSciNetCrossRefGoogle Scholar
  22. 22.
    Hurst P, Relating composition operators on different weighted Hardy spaces, Arch. Math. (Basel) 68 (1997) 503–513MathSciNetCrossRefGoogle Scholar
  23. 23.
    Kamowitz H, The spectra of composition operators on \(H^p\), J. Funct. Anal. 18 (1975) 132–150CrossRefGoogle Scholar
  24. 24.
    Kriete T L, MacCluer B D and Moorhouse J L, Toeplitz-composition \(C^{\ast }\)-algebras, J. Oper. Th. 58 (2007) 135–156MathSciNetzbMATHGoogle Scholar
  25. 25.
    MacCluer B D, Narayan S K and Weir R J, Commutators of composition operators with adjoints of composition operators on weighted Bergman spaces, Complex Var. Elliptic Equ. 58 (2013) 35–54MathSciNetCrossRefGoogle Scholar
  26. 26.
    Nordgren E A, Composition operators, Can. J. Math. 20 (1968) 442–449CrossRefGoogle Scholar
  27. 27.
    Shapiro J H, Composition Operators and Classical Function Theory (1993) (New York: Springer)CrossRefGoogle Scholar
  28. 28.
    Shapiro J H and Smith W, Hardy spaces that support no compact composition operators, J. Funct. Anal. 205 (2003) 62–89MathSciNetCrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Department of MathematicsShiraz University of TechnologyShirazIran

Personalised recommendations