A criterion for quasinormality in \(\pmb {\mathbb {C}^n}\)

  • Gopal Datt
  • Sanjay KumarEmail author


In this article, we give a Zalcman type renormalization result for the quasinormality of a family of holomorphic functions on a domain in \(\mathbb {C}^n\) that takes values in a complete complex Hermitian manifold.


Analytic set Holomorphic mapping Normal family Quasi-normal family 

2010 Mathematics Subject Classification




The authors would like to thank Gautam Bharali and Kaushal Verma, IISc, Bangalore for stimulating discussions about this work as well as for critical comments. They are also grateful to the referee for his diligence and helpful suggestions to enhance the quality of the paper. The first author is thankful to the organizers of HAYAMA Symposium on Complex Analysis of Several Variables XVIII, held in Japan (July 2016) for giving him an opportunity to present this work. The research work of the first author is supported by the postdoctoral fellowship of Harish-Chandra Research Institute, Allahabad and the National Postdoctoral Fellowship SERB (DST) India. The research of the second author is supported by a Minor Research Project grant of UGC (India).


  1. 1.
    Aladro G, Application of the Kobayashi metric to normal functions of several complex variables, Utilitas Math. 31 (1987) 13–24MathSciNetzbMATHGoogle Scholar
  2. 2.
    Aladro G and Krantz S G, A criterion for normality in \(\mathbb{C}^n,\) J. Math. Anal. Appl. 161 (1991) 1–8MathSciNetCrossRefGoogle Scholar
  3. 3.
    Beardon A F and Minda D, Normal families: a geometric perspective, Comput. Methods Funct. Theory 14(2) (2014) 331–355, MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chuang C-T, Normal Families of Meromorphic Functions (1993) (World Scientific)CrossRefGoogle Scholar
  5. 5.
    Dujardin R, Bifurcation currents and equidistribution in parameter space, Frontier in Complex dynamics, pp. 515–566, Princeton Math. Ser., 51 (2014) (Princeton, NJ: Princeton Univ. Press), arXiv:1111.3989v2 [math.DS], 7 February 2012
  6. 6.
    Fujimoto H, On families of meromorphic maps into the complex projective space, Nagoya Math. J. 54 (1974) 21–51MathSciNetCrossRefGoogle Scholar
  7. 7.
    Ivashkovich S and Neji F, Weak Normality of families of meromorphic mappings and bubbling in higher domains, Ann. Scuola Norm. Sup. Pisa Cl. Sci. XIV(3) (2015) 841–880,, arXiv:1104.3973v3 [math.CV], 17 September 2013
  8. 8.
    Kobayashi S, Hyperbolic Manifolds and Holomorphic Mappings (1970) (New York: Marcel Dekker)zbMATHGoogle Scholar
  9. 9.
    Krantz S G, Function Theory of Several Complex Variables, second edition (1992) (AMS Chelsea Publishing)zbMATHGoogle Scholar
  10. 10.
    Montel P, Sur les suites infinies de fonctions, Ann. École. Norm. Sup. 24(3) (1907) 233–334MathSciNetCrossRefGoogle Scholar
  11. 11.
    Montel P, Sur les familles de fonctions analytiques qui admettent des valeurs exceptionnelles dans un domaine, Ann. École Norm. Sup. 29(3) (1912) 487–535MathSciNetCrossRefGoogle Scholar
  12. 12.
    Montel P, Sur les familles quasi-normales de fonctions holomorphes, Mem. Acad. Roy. Belgique 6(2) (1922) 1–41zbMATHGoogle Scholar
  13. 13.
    Montel P, Leçons sur les familles normales de fonctions analytiques et leurs applications (1927) (Paris: Gauthier-Villars), reprinted by Chelsea Publ. Co., New York, 1974Google Scholar
  14. 14.
    Nevo S, Applications of Zalcman’s lemma to \(Q_m\)-normal families, Analysis 21 (2001) 289–325MathSciNetCrossRefGoogle Scholar
  15. 15.
    Nishino T, Function theory in several complex variables, translations of mathematical monograph 193 (2001) (AMS)CrossRefGoogle Scholar
  16. 16.
    Royden H L, Remarks on the Kobayashi metric, Proc. Maryland Conference on Several Complex Variables, Springer Lecture Notes 185 (1971) (Berlin: Springer-Verlag)Google Scholar
  17. 17.
    Rutishauser H, \(\ddot{\text{ U }}\)ber die Folgen und Scharen von analytischen und meromorphen Funktionen mehrerer Variabeln, sowie von analytischen Abbildungen, Acta Math. 83 (1950) 249–325MathSciNetCrossRefGoogle Scholar
  18. 18.
    Schiff J L, Normal Families, (1993) (Berlin: Springer)CrossRefGoogle Scholar
  19. 19.
    Thai D D, Duc M A and Thu N V, On limit body curves in \({\mathbb{C}}^n\) and \(({\mathbb{C}}^*)^2\), Kyushu J. Math. 69 (2015) 111–123MathSciNetCrossRefGoogle Scholar
  20. 20.
    Thai D D, Trang P N T and Huong P D, Families of normal maps in several complex variables and hyperbolicity of complex spaces, Complex Variables 48(6) (2003) 469–482MathSciNetzbMATHGoogle Scholar
  21. 21.
    Trao N Y and Trang P N T, On Zalcman complex space and Noguchi-type convergence-extension theorems for holomorphic mappings into weakly Zalcman complex spaces, Acta Math. Vietnam 32(1) (2007) 83–97MathSciNetzbMATHGoogle Scholar
  22. 22.
    Zalcman L, A heuristic principle in complex function theory, Am. Math. Mon. 82 (1975) 813–817MathSciNetCrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.School of MathematicsHarish-Chandra Research Institute (HBNI)Jhunsi, AllahabadIndia
  2. 2.Department of MathematicsIndian Institute of ScienceBangaloreIndia
  3. 3.Department of Mathematics, Deen Dayal Upadhyaya CollegeUniversity of DelhiDelhiIndia

Personalised recommendations