Certain Somos’s \(\varvec{P}\)\(\varvec{Q}\) type Dedekind \(\varvec{\eta }\)-function identities

  • B R Srivatsa KumarEmail author
  • H C Vidya


In this paper, we provide a new proof for the Dedekind \(\eta \)-function identities discovered by Somos. During this process, we found two new Dedekind \(\eta \)-function identities. Furthermore, we extract interesting partition identities from some of the \(\eta \)-function identities.


Dedekind \(\eta \)-function theta functions modular equations colored partitions 

2010 Mathematics Subject Classification

Primary: 11F20 11B65 11P83 Secondary: 14K25 



The authors are extremely grateful to the referee for numerous suggestions which have significantly improved the presentation of this work. The authors would also like to thank Dr. K R Vasuki, Department of Studies in Mathematics, Manasa Gangothri, University of Mysore, Mysore, India for his guidance during the preparation of this paper. The research of the first author is partially supported under Extra Mural Research Funding by SERB, a statutory body of DST, Government of India (File No. EMR/2016/001601).


  1. 1.
    Adiga C, Vasuki K R and Naika M S M, Some new evaluations of Ramanujan’s cubic continued fractions, New Zealand J. Math., 31 (2002) 109–117MathSciNetzbMATHGoogle Scholar
  2. 2.
    Adiga C, Kim T, Naika M S M and Madhusudan H S, On Ramanujan’s cubic continued fractions and explicit evaluations of theta functions, Indian J. Pure Appl. Math., 35 (2004) 1047–1062MathSciNetzbMATHGoogle Scholar
  3. 3.
    Baruah N D, On some of Ramanujans identities for eta functions, Indian J. Math., 43 (2000) 253–266MathSciNetzbMATHGoogle Scholar
  4. 4.
    Baruah N D and Saikia N, Some general theorems on the explicit evaluations of Ramanujans cubic continued fraction, J. Computational Appl. Math., 160 (2003) 37–51MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Berndt B C, Ramanujan’s Notebooks, Part III (1991) (New York: Springer)Google Scholar
  6. 6.
    Berndt B C and Zhang L C, Ramanujan’s identities for eta functions, Math. Ann., 292 (1992) 561–573MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Berndt B C, Ramanujan’s Notebooks, Part IV (1994) (New York: Springer)Google Scholar
  8. 8.
    Berndt B C , Chan H H, Zhang L-C, Ramanujan’s class invariants and cubic continued fraction, Acta Arith., 73 (1995) 67–85MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Berndt B C and Chan H H, Some values for Rogers–Ramanujan continued fraction, Canadian J. Math., 47 (1995) 897–914MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Berndt B C, Modular equations in Ramanujans Lost Notebook, in: Number Theory, edited by R P Bamvah, V C Dumir and R S Hans-Gill (1999) (Delhi: Hindustan Book Co.)Google Scholar
  11. 11.
    Bhargava S, Vasuki K R and Sreeramurthy T G, Some evaluations of Ramanujan’s cubic continued fraction, Indian J. Pure Appl. Math., 35 (2004) 1003–1025MathSciNetzbMATHGoogle Scholar
  12. 12.
    Chen S L and Haung S-S, New modular relations for the Göllnitz–Gordon functions, J. Number Theory, 93 (2002) 58–75MathSciNetCrossRefGoogle Scholar
  13. 13.
    Haung S-S, On modular relations for Göllnitz–Gordon functions with applications to partitions, J. Number Theory, 68 (1998) 178–216MathSciNetCrossRefGoogle Scholar
  14. 14.
    Naika M S M, Dharmendra B N and Chandan Kumar S, Some identities for Göllnitz\(-\)Gordon continued fraction, The Australian J. Math. Anal. Appl., 10 (2013) 1–36MathSciNetzbMATHGoogle Scholar
  15. 15.
    Ramanujan S, Notebooks (2 Volumes) (1957) (Bombay: Tata Institute of Fundamental Research)Google Scholar
  16. 16.
    Ramanujan S, The Lost Notebook and other unpublished papers (1988) (New Delhi: Narosa)Google Scholar
  17. 17.
    Somos M, personal communication (2014)Google Scholar
  18. 18.
    Srivatsa Kumar B R and Veeresha R G, Partition identities arising from Somos’s theta function identities, Annali dell universita di Ferrrara, 63 (2017) 303–313MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Srivatsa Kumar B R and Anuradha D, Somos’s theta function identities of level 10, Turkish J. Math., 42(3) (2018) 763–773MathSciNetGoogle Scholar
  20. 20.
    Vasuki K R and Sreeramamurthy T G, A note on \(P-Q\) modular equations, Tamsui Oxf. J. Math. Sci., 21 (2005) 109–120MathSciNetzbMATHGoogle Scholar
  21. 21.
    Vasuki K R, On some Ramanujan’s \(P-Q\) modular equations, J. Indian Math. Soc., 73 (2006) 131–143MathSciNetzbMATHGoogle Scholar
  22. 22.
    Vasuki K R and Srivatsa Kumar B R, Evaluation of the Ramanujan–Göllnitz–Gordon continued fraction \(H(q)\) by modular equations, Indian J. Math., 48 (2006) 275–300MathSciNetzbMATHGoogle Scholar
  23. 23.
    Vasuki K R and Srivatsa Kumar B R, Certian identities for Ramanujan–Göllnitz–Gordan continued fraction, J. Computational Appl. Math., 187 (2006) 87–95MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Vasuki K R, Sharath G and Rajanna K R, Two modular equations for squares of the cubic-functions with applications, Note di Mathematica, 30 (2010) 61–71MathSciNetzbMATHGoogle Scholar
  25. 25.
    Vasuki K R and Kahtan A A A, On certain theta function identities analogous to Ramanujan’s \(P-Q\) eta function identities, Appl. Math., 2 (2011) 874–882MathSciNetCrossRefGoogle Scholar
  26. 26.
    Vasuki K R and Veeresha R G, On Somos’s theta function identities of level 14, Ramanujan J., 42 (2017) 131–144MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Yuttanan B, New modular equations in the spirit of Ramanujan, Ramanujan J., 29 (2012) 257–272MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.Department of Mathematics, Manipal Institute of TechnologyManipal Academy of Higher EducationManipalIndia

Personalised recommendations