Proceedings Mathematical Sciences

, Volume 117, Issue 1, pp 1–12 | Cite as

Frames and bases in tensor products of Hilbert spaces and Hilbert C*-modules

  • Amir Khosravi
  • Behrooz Khosravi


In this article, we study tensor product of Hilbert C*-modules and Hilbert spaces. We show that if E is a Hilbert A-module and F is a Hilbert B-module, then tensor product of frames (orthonormal bases) for E and F produce frames (orthonormal bases) for Hilbert AB-module EF, and we get more results.

For Hilbert spaces H and K, we study tensor product of frames of subspaces for H and K, tensor product of resolutions of the identities of H and K, and tensor product of frame representations for H and K.


Frame frame operator tensor product Hilbert C*-module 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Aldroubi A, Larson D, Tang W and Weber E, Geometric aspects of frame representation of Abelian groups, Trans. Am. Math. Soc. 356(120) (2004) 4767–4786zbMATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    Bakic D and Guljas B, Hilbert C*-modules over C*-algebras of compact operators, Acta Sci. Math. (Szeged) 68(1–2) (2002) 249–269zbMATHMathSciNetGoogle Scholar
  3. [3]
    Casazza P G, The art of frame theory, Taiwanese J. Math. 4 (2000) 129–201zbMATHMathSciNetGoogle Scholar
  4. [4]
    Casazza P G and Kutyniok G, Frames of subspaces, Contemp. Math. vol. 345, Am. Math. Soc. (RI: Providence) (2004) pp. 87–113Google Scholar
  5. [5]
    Christensen O, An introduction to frames and Riesz bases (Boston: Birkhauser) (2003)zbMATHGoogle Scholar
  6. [6]
    Daubechies I, Grassman A and Meyer Y, Painless nonorthogonal expansions, J. Math. Phys. 27 (1986) 1271–1283zbMATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    Duffin R J and Schaeffer A C, A class of nonharmonic Fourier series, Am. Math. Soc. 72 (1952) 341–366zbMATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    Folland G B, A course in abstract harmonic analysis (Boca Raton Florida: CRC Press) (1995)zbMATHGoogle Scholar
  9. [9]
    Fornasier M, Decomposition of Hilbert spaces, in: local construction of global frames (ed.) B Bojanov, Proc. Int. Conf. on Constructive Function Theory, Varna, 2002, DARBA (Sofia) (2003)Google Scholar
  10. [10]
    Frank M and Larson D R, A module frame concept for Hilbert C*-modules, in: Functional and harmonic analysis of wavelets, San Antonio, Tx, Jan. 1999. Contemp Math. vol. 247, Am. Math. Soc. (RI: Providence) (1999) pp. 207–233Google Scholar
  11. [11]
    Frank M and Larson D R, Frames in Hilbert C*-modules and C*-algebras, J. Op. Theory 48 (2002) 273–314zbMATHMathSciNetGoogle Scholar
  12. [12]
    Gabor D, Theory of Communications, J. Inst. Electr. Eng. (London) 93(3) (1946) 429–457Google Scholar
  13. [13]
    Han D and Larson D R, Frames, bases and group representations, Mem. Am. Math. Soc. 147 (2000) 697MathSciNetGoogle Scholar
  14. [14]
    Heil C E and Walnut D F, Continuous and discrete wavelet transforms, SIAM Review 31 (1989) 628–666zbMATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    Khosravi A and Asgari M S, Frames and bases in tensor product of Hilbert spaces, Int. J. Math. 4(6) (2003) 527–538MathSciNetGoogle Scholar
  16. [16]
    Lance E C, Hilbert C*-modules — a toolkit for operator algebraists, London Math. Soc. Lecture Note Ser., (Cambridge, England: Cambridge Univ. Press) (1995) vol. 210Google Scholar
  17. [17]
    Murphy G J, C*-algebra and operator theory (San Diego, California: Academic Press) (1990)Google Scholar
  18. [18]
    Wegge-Olsen N E, K-Theory and C*-algebras, a friendly approach (Oxford, England: Oxford Univ. Press) (1993)Google Scholar
  19. [19]
    Young R, An introduction to nonharmonic Fourier series (New York: Academic Press) (1980)zbMATHGoogle Scholar

Copyright information

© Indian Academy of Sciences 2007

Authors and Affiliations

  • Amir Khosravi
    • 1
  • Behrooz Khosravi
    • 2
  1. 1.Faculty of Mathematical Sciences and Computer EngineeringUniversity for Teacher EducationTehranIran
  2. 2.Department of Pure Mathematics, Faculty of Mathematics and Computer ScienceAmirkabir University of Technology (Tehran Polytechnic)TehranIran

Personalised recommendations