Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Structural, electronic, elastic and magnetic properties of heavier \(\hbox {REIr}_{3}\) (RE \(=\) Gd, Tb and Ho) intermetallic compounds

  • 5 Accesses


We present results on the bonding nature, structural, electronic, magnetic and elastic properties of \(\hbox {REIr}_{3}\) (RE \(=\) Gd, Tb and Ho) intermetallic compounds adopting simple cubic \(\hbox {AuCu}_{3}\)-type structure obtained using the full-potential linearlised augmented plane wave (FP-LAPW) method based on density functional theory. The local spin density approximation (LSDA) with Hubbard parameter (LSDA \(+\,U\)) has been used for exchange and correlation effects to get accurate results because of the presence of highly localised 4f electrons of rare-earth (RE) (RE \(=\) Gd, Tb and Ho) atoms. The calculated lattice parameter is found to be consistent with the experimental results. The calculated magnetic moments predict ferromagnetic behaviour of these compounds. The electronic and bonding properties have been solved in terms of band structure, density of states (DOS) and charge density plots. These results confirm the metallic nature of these compounds. The bonding appearances of these compounds have also been interpreted from charge density plots. The elastic constants, shear modulus and Cauchy’s pressure are computed and they reveal that \(\hbox {GdIr}_{3}\) and \(\hbox {TbIr}_{3}\) compounds are ductile while \(\hbox {HoIr}_{3}\) shows brittle character.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    S Ram, V Kanchana, G Vaitheeswaran, A Svane, S B Dugdale and N E Christensen, Phys. Rev. B 85, 174531 (2012)

  2. 2.

    I R Harris, W E Gardner and R H Taylor, J. Less-Common Metals 31, 151 (1973)

  3. 3.

    I R Harris, J. Less-Common Metals 14, 459 (1968)

  4. 4.

    J M Lawrence, Y C Chen, G H Kwei, M F Hundley and J D Thompson, Phys. Rev. B 56, 5 (1997)

  5. 5.

    G Arnold and N Nereson, J. Chem. Phys. 51, 1495 (1969)

  6. 6.

    A Raman, J. Less-Common Metals 26, 199 (1972)

  7. 7.

    O Loebich Jr and E Raub, J. Less-Common Metals 46, 1 (1976)

  8. 8.

    P P Singh and A Raman, Metall. Trans. 1, 237 (1970)

  9. 9.

    K Gornicka, E M Carnicom and S Golab, Supercond. Sci. Technol. 1, 102955 (2018)

  10. 10.

    N Yuan-Tao, Z Xin-Ming and Z Yun, J. Less-Common Metals 147, 167 (1989)

  11. 11.

    B Mondal, S Dan, S Mondal and R N Bhowmik, Cond. Mater. Mater. Sci (2019)

  12. 12.

    G M Elalfy, R M Shabara, S H Aly and S Yehia, Comput. Condens. Matter 24, 5 (2015); B Zegaou, N Benkhettou, D Rached, A H Reshak and S Benalia, Comput. Mater. Sci. 87, 172 (2014)

  13. 13.

    P Blaha, K Schwarz, G K H Madsen, D Kuasnicka and J Luitz, WIEN2K, An augmented plane wave \(+\) local orbitals program for calculating crystal properties; K Schwarz, Technical Universitat Wien, Austria, ISBN 3-9501031-1-2 (2001)

  14. 14.

    P Hohenberg and W Kohn, Phys. Rev. B 136, 864 (1964)

  15. 15.

    J P Perdew and A Zunger, Phys. Rev. B 23, 5079 (1981)

  16. 16.

    V I Anismov, I V Solovyey, M T Czyyk and G A Sowatzky, Phys. Rev. B 48, 16934 (1993)

  17. 17.

    H J Monkhorst and J D Pack, Phys. Rev. B 13, 5192 (1976)

  18. 18.

    J Hubbard, Proc. R. Soc. (London)276 (A), 238 (1964)

  19. 19.

    S Gupta, K G Suresh, A K Nigam and A V Luckoyanov, J. Alloy. Compd. 640, 71 (2015)

  20. 20.

    F Birch, J. Appl. Phys. 9, 288 (1938)

  21. 21.

    H Lohani, P Mishra and B R Sekhar, Physica C 512, 60 (2015)

  22. 22.

    T Jeong, Int. J. Mod. Phys. B 22, 841 (2008)

  23. 23.

    M Born, Proc. Cam. Philos. Soc.36, 172 (1940)

  24. 24.

    M Born and K Huang, Dynamical theory of crystal lattices (Oxford University Press, London, 1956)

  25. 25.

    S F Pugh, Philos. Mag. J. Sci. 45, 843 (1954)

  26. 26.

    S Ganeshan, S L Shang, H Zhang, Y Wang, M Mantina and Z K Liu, Intermetallics 17, 318 (2009)

Download references


The author (PS) is thankful to Barkatullah University for the financial assistance.

Author information

Correspondence to Pushplata Shukla.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shukla, P., Singh, S. Structural, electronic, elastic and magnetic properties of heavier \(\hbox {REIr}_{3}\) (RE \(=\) Gd, Tb and Ho) intermetallic compounds. Pramana - J Phys 94, 42 (2020). https://doi.org/10.1007/s12043-019-1909-x

Download citation


  • Rare-earth transition metal compounds
  • spin polarisation
  • Hubbard parameter
  • structural, electronic and elastic properties


  • 71.20.Eh
  • 75.90.+w
  • 71.10.Fd
  • 71.20.−b
  • 31.15.E−