Advertisement

Pramana

, 93:100 | Cite as

Lie symmetry analysis for the coupled integrable dispersionless equations

  • Yao Zhang
  • Ben GaoEmail author
Article
  • 82 Downloads

Abstract

In this paper, we primarily investigate Lie symmetry analysis and exact solutions for the coupled integrable dispersionless equations. First of all, based on the Lie symmetry analysis, an optimal system of one-dimensional subalgebras is constructed. Furthermore, similarity reductions and group invariant solutions are given. Next, exact solutions of the reduced equations have been derived by the method of power series. Finally, by means of Ibragimov’s method, conservation laws are obtained.

Keyword

Coupled integrable dispersionless equations symmetry analysis optimal system conservation laws 

PACS Nos

02.30.Jr 11.30.−j 05.45.Yv 04.20.Jb 

Notes

Acknowledgements

This research is sponsored by the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (No. 2017116) and the Natural Science Foundation of Shanxi (No. 201801D121018).

References

  1. 1.
    K Konno and H Oono, J. Phys. Soc. Jpn. 63, 377 (1994)ADSCrossRefGoogle Scholar
  2. 2.
    Z W Xu, Commun. Nonlinear Sci. Numer. Simul. 28, 40 (2016)Google Scholar
  3. 3.
    Z T Fu and J Y Mao, Commun. Nonlinear Sci. Numer. Simul. 17, 2362 (2012)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    C H Gu, Soliton theory and its application (Springer, Berlin, 1995)CrossRefGoogle Scholar
  5. 5.
    R Hirota, Phys. Rev. Lett. 27, 1192 (1971)ADSCrossRefGoogle Scholar
  6. 6.
    V B Matveev and M A Salle, Darboux transformations and solitons (Springer, Berlin, 1991)CrossRefGoogle Scholar
  7. 7.
    F Cariello and M Tabor, Physica D 39, 77 (1989)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    S Lie, Theories der Tranformationgruppen (Dritter and Letzter Abschnitt, Teubner, Leipzig, Germany, Berlin, 1888) Google Scholar
  9. 9.
    G W Bluman and J D Cole, J. Math. Mech. 18, 1025 (1969)Google Scholar
  10. 10.
    S Sahoo and S S Ray, Comput. Math. Appl. 73, 253 (2017)MathSciNetCrossRefGoogle Scholar
  11. 11.
    A A Afify and M Abd El-Aziz, Pramana – J. Phys. 88: 31 (2017)ADSCrossRefGoogle Scholar
  12. 12.
    G W Wang and M S Hashemi, Pramana – J. Phys. 88: 7 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    C S Gardner, J M Greene, M D Kruskal and R M Miura, Phys. Rev. Lett. 19, 1095 (1967)ADSCrossRefGoogle Scholar
  14. 14.
    R O Popovych, V M Boyko, M O Nesterenko and M W Lutfullin, J. Phys. A 36, 7337 (2003)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    P J Olver, Applications of Lie groups to differential equations (Springer, Berlin, 1986)CrossRefGoogle Scholar
  16. 16.
    Y N Grigoriev, N H Ibragimov, V F Kovalev and S V Meleshko, Symmetry of integro-differential equations: With applications in mechanics and plasma physics (Springer, Berlin, 2010)CrossRefGoogle Scholar
  17. 17.
    W Rudin, Principles of mathematical analysis, 3rd edn (China Machine Press, Beijing, 2004)zbMATHGoogle Scholar
  18. 18.
    J F Ganghoffer and I Mladenov, Similarity and symmetry methods (Springer, Berlin, 2014)CrossRefGoogle Scholar
  19. 19.
    N H Ibragimov, J. Math. Anal. Appl. 333, 311 (2007)MathSciNetCrossRefGoogle Scholar
  20. 20.
    N H Ibragimov, J. Phys. A 44, 432002 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    Z Y Zhang, Commun. Nonlinear Sci. Numer. Simul. 20, 338 (2015)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.College of MathematicsTaiyuan University of TechnologyTaiyuanPeople’s Republic of China

Personalised recommendations