, 93:91 | Cite as

High polarisation extinction ratio of the TM-pass polariser with silicon carbide / graphene / silicon multilayers

  • Xinyu Wang
  • Wei SuEmail author
  • Xingyu Liu


We propose a compact TM-pass polariser, consisting of silicon (Si) / silicon carbide (SiC) / Si layers. Two graphene sheets are sandwiched between the Si and SiC layers as the interlayer to enhance the interaction with light. The loss characteristics have been investigated by using the finite-difference time-domain (FDTD) method. The proposed structure exhibits a low insertion loss (IL) of \(\sim \)0.25 \(\hbox {dB}\) and a high polarisation extinction ratio (PER) of \(\sim \)57 \(\hbox {dB}\). To verify the robustness of the proposed polariser, we analyse the fabrication tolerance of the waveguide width and the height of the Si and SiC layers. The polariser shows great fabrication error tolerance. In addition, by employing a \(100\,\mu \hbox {m}\) long waveguide, a PER of 48.3–59.4 dB is obtained in the visible regime ranging from 400 to 600 nm.


Polariser graphene high extinction ratio 


02.60.Cb 42.25.Bs 42.25.Ja 



This work was partially supported by the National Natural Science Foundation of China under Grant 61705058, Natural Science Foundation of Jiangsu Province under Grant BK20170302, Changzhou Science and Technology Program under Grant CJ20179023 and Fundamental Research Fund for Central Universities of China under Grant 2019B21314.


  1. 1.
    A Rahim, E Ryckeboer, A Subramanian, S Clemmen, B Kuyken, A Dhakal, A Raza, A Hermans and M Muneeb, J. Light. Technol.35, 639 (2017)ADSCrossRefGoogle Scholar
  2. 2.
    Q Bao and K Loh, ACS Nano6, 3677 (2012)CrossRefGoogle Scholar
  3. 3.
    S Jahani and Z Jacob, Nat. Nanotechnol.11, 23 (2016)ADSCrossRefGoogle Scholar
  4. 4.
    B Ni and J Xiao, IEEE J. Quantum Electron.53, 1 (2017)ADSCrossRefGoogle Scholar
  5. 5.
    M Cappellar, Annu. Rev. Astron. Astr.54, 597 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    Y Cheng, C Wu, Z Cheng and R Gong, Prog. Electromagn. Res.155, 105 (2016)CrossRefGoogle Scholar
  7. 7.
    H Xu, S Tang, G Wang, T Cai, W Huang, Q He, S Sun and L Zhou, IEEE Trans. Antennas Propag.64, 3676 (2016)ADSCrossRefGoogle Scholar
  8. 8.
    D Kim, M Lee, Y Kim and K Kim, Opt. Express24, 21560 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    K Liu, J Varghese, J Gerasimov, A Polyakov, M Shuai, J Su, D Chen, W Zajaczkowski, A Marcozzi and W Pisula, Nat. Commun.7, 11476 (2016)ADSCrossRefGoogle Scholar
  10. 10.
    S Kim, B Kim, J Lee, H Shin, Y Park and J Park, Mater. Sci. Eng. R.99, 1 (2016)CrossRefGoogle Scholar
  11. 11.
    V Sharma, D Madaan and A Kapoor, IEEE Photon. Technol. Lett.29, 559 (2017)ADSCrossRefGoogle Scholar
  12. 12.
    Z Ge and S Wu, Appl. Phys. Lett.22, 121104 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    T Sun, J Kim, J Yuk, A Zettl, F Wang and C Chang-Hasnain, Opt. Express24, 26035 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    L Yang, T Hu, R Hao, C Qiu, C Xu, H Yu, X Jiang, Y Li and J Yang, Opt. Lett.38, 2512 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    Z Huang, H Park, E Parrott, H Cha and E Pickwell-MacPherson, IEEE Photon. Technol. Lett.25, 81 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    B Lee, A Mousavian, M Paul, Z Thompson, A Stickel, D McCuen, E Jang, Y Kim, J Kyoung and D Kim, Appl. Phys. Lett.108, 241111 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    A Geim, Science324, 1530 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    W Su and B Chen, Pramana – J. Phys.89: 37 (2017)ADSCrossRefGoogle Scholar
  19. 19.
    S M Demir, Y Yuksek and C Sabah, Pramana – J. Phys.90: 65 (2018)ADSCrossRefGoogle Scholar
  20. 20.
    K Novoselov, A Geim, S Morozov, D Jiang, M Katsnelson, I Grigorieva, S Dubonos and A Firsov, Nature438, 197 (2005)ADSCrossRefGoogle Scholar
  21. 21.
    K Bhatt, C Rani, M Vaid, P Kumar, S Kumar, S Shriwastawa, S Sharma, R Singh and C C Tripathi, Pramana – J. Phys.90: 75 (2018)ADSCrossRefGoogle Scholar
  22. 22.
    L Ming, Y Xiaobo, U Erick, G Baisong, Z Thomas, J Long, W Feng and Z Xiang, Nature474, 64 (2011)CrossRefGoogle Scholar
  23. 23.
    J Kim and C Choi, Opt. Express20, 3556 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    D Oliveira, E Rafael and J Christiano, Sci. Rep. UK5, 16949 (2015)CrossRefGoogle Scholar
  25. 25.
    X Yin, Z Tian, C Lin and L Xun, Opt. Lett.40, 1733 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    X Hu and W Jian, IEEE Photon. J.9, 1 (2017)Google Scholar
  27. 27.
    E D Palik, Handbook of optical constants of solids (Academic Press, San Diego, 1998).Google Scholar
  28. 28.
    S Bahadori-Haghighi, R Ghayour and M Sheikhi, J. Light. Technol.35, 2211 (2017)ADSCrossRefGoogle Scholar
  29. 29.
    P Chen, J Soric, Y Padooru, H Bernety, A Yakovlev and A Alu, New J. Phys.15, 123029 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    F Wang, Y Zhang, C Tian, C Girit, A Zettl, M Crommie and Y Shen, Science320, 206 (2008)ADSCrossRefGoogle Scholar
  31. 31.
    M Kwon, IEEE Photon. J.6, 1 (2014)CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Department of Mathematics and PhysicsHohai UniversityChangzhouChina
  2. 2.College of Mechanical and Electrical EngineeringHohai UniversityChangzhouChina

Personalised recommendations