Advertisement

Pramana

, 93:52 | Cite as

Determination of classical behaviour of the Earth for large quantum numbers using quantum guiding equation

  • Ali Soltanmanesh
  • Afshin ShafieeEmail author
Article
  • 8 Downloads

Abstract

For quantum systems, we expect to see the classical behaviour at the limit of large quantum numbers. Hence, we apply Bohmian approach for describing the evolution of Earth around the Sun. We obtain possible trajectories of the Earth system with different initial conditions which converge to a certain stable orbit, known as the Kepler orbit, after a given time. The trajectories are resulted from the guiding equation \(p=\nabla S\) in the Bohmian mechanics, which relates the momentum of the system to the phase part of the wave function. Except at some special situations, Bohmian trajectories are not Newtonian in character. We show that the classic behaviour of the Earth can be interpreted as the consequence of the guiding equation at the limit of large quantum numbers.

Keywords

Bohmian mechanics quantum trajectories correspondence principle 

PACS Nos

03.65.Ta 03.65.−w 03.65.Ca 04.25.−g 

Notes

Acknowledgements

The authors would like to thank M Koorepaz Mahmoodabadi for his assistance and useful comments on the nonlinear equations with closed cycles which improved their ideas on the subject.

References

  1. 1.
    D Keeports, Eur. J. Phys. 33, 1587 (2012)CrossRefGoogle Scholar
  2. 2.
    D Dürr, S Goldstein and N Zanghi, J. Stat. Phys. 67, 843 (1992)ADSCrossRefGoogle Scholar
  3. 3.
    P Holland, The quantum theory of motion: An account of the de Broglie–Bohm casual interpretation of quantum mechanics (Cambridge University Press, Cambridge, 1995)zbMATHGoogle Scholar
  4. 4.
    F Rahmani, M Golshani and M Sarbishei, Pramana – J. Phys. 86(4), 747 (2016)ADSCrossRefGoogle Scholar
  5. 5.
    F Rahmani, M Golshani and M Sarbishei, Pramana – J. Phys. 87(2): 23 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    J Y Koupaei and M Golshani, J. Math. Phys. 54(12), 122107 (2013)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    A Tilbi, T Boudjedaa and M Merad, Pramana – J. Phys. 87(5): 66 (2016)ADSCrossRefGoogle Scholar
  8. 8.
    D Dürr and S Teufel, Bohmian mechanics: The physics and mathematics of quantum theory (Springer, Berlin, Heidelberg, 2009)zbMATHGoogle Scholar
  9. 9.
    E Flöthmann and K H Welge, Phys. Rev. A 54, 1884 (1996)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    M C Gutzwiller, Chaos in classical and quantum mechanics (Springer, Berlin, Heidelberg, 1990)CrossRefGoogle Scholar
  11. 11.
    J Laskar, P Robutel, F Joutel, M Gastineau, A C M Correia and B Levrard, Astron. Astrophys. 428, 261 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    E Battista and G Esposito, Phys. Rev. D 89, 084030 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    M C Gutzwiller, Rev. Mod. Phys.  70, 589 (1998)ADSCrossRefGoogle Scholar
  14. 14.
    M J Holman and N W Murray, Astron. J. 112, 1278 (1996)ADSCrossRefGoogle Scholar
  15. 15.
    H A Bethe and E E Salpeter, Quantum mechanics of one- and two-electron atoms (Springer Verlag, Berlin, New York, 1957)CrossRefGoogle Scholar
  16. 16.
    E Nielsen, D V Federov, A S Jensen and E Garrido, Phys. Rep. 347, 373 (2001)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    J Carlson and R Schiavilla, Rev. Mod. Phys. 70 743 (1998)ADSCrossRefGoogle Scholar
  18. 18.
    G Tanner, K Richter and J M Rost, Rev. Mod. Phys. 72, 497 (2000)ADSCrossRefGoogle Scholar
  19. 19.
    A S Jensen, A Cobis, D V Fedorov, E Garrido and E Nielsen, Few-Body Syst. 10, (Suppl.) 19 (1999)CrossRefGoogle Scholar
  20. 20.
    B Jonson and K Riisager, Philos. Trans. R. Soc. Lond. A 356, 2063 (1998)ADSCrossRefGoogle Scholar
  21. 21.
    J M Randazzo, F Buezas, A L Frapiccini, F D Colavecchia and G Gasaneo, Phys. Rev. A 84, 052715 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    F Robicheaux, Phys. Rev. A 60, 1706 (1999)ADSCrossRefGoogle Scholar
  23. 23.
    G Chen, Z Ding, A Perronnet and Z Zhang, J. Math. Phys. 49, 062102 (2008)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    A Yahalom, J Levitan, M Lewkowicz and L Horwitz, Phys. Lett. A 375, 2111 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    X Cui, Few-Body Syst. 52, 65 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    R Castelli, Commun. Nonlinear Sci. 17, 804 (2012)CrossRefGoogle Scholar
  27. 27.
    H W Hamber and S Liu, Phys. Lett. B 357, 51 (1995)ADSCrossRefGoogle Scholar
  28. 28.
    S Naoz, B Kocsis, A Loeb and N Yunes, Astrophys. J. 773(2), 187 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    J Hartung and J Steinhoff, Ann. Phys. 523, 783 (2011)CrossRefGoogle Scholar
  30. 30.
    T Damour, P Jaranowski and G Schäfer, Phys. Rev. D 62, 021501 (2000)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    J S Townsend, A modern approach to quantum mechanics (University Science Books, CA, USA, 2000)Google Scholar
  32. 32.
    D Bohm, Phys. Rev. 85, 166 (1952)ADSCrossRefGoogle Scholar
  33. 33.
    D Bohm and B J Hiley, The undivided universe: An ontological interpretation of quantum theory (Routledge, UK, 2006)CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Research Group on Foundations of Quantum Theory and Information, Department of ChemistrySharif University of TechnologyTehranIran
  2. 2.School of PhysicsInstitute for Research in Fundamental Sciences (IPM)TehranIran

Personalised recommendations