Advertisement

Pramana

, 93:53 | Cite as

Enhancement in heat and mass transfer over a permeable sheet with Newtonian heating effects on nanofluid: Multiple solutions using spectral method and stability analysis

  • Irfan Mustafa
  • Tariq Javed
  • Abuzar GhaffariEmail author
  • Hammad Khalil
Article
  • 4 Downloads

Abstract

This paper investigates the Newtonian heating effect on nanofluid flow over a nonlinear permeable stretching / shrinking sheet near the region of stagnation point. Only two important mechanisms on the transportation of nanoparticles in base fluid are discussed: the Brownian motion and thermophoresis. This physical problem is modelled using the Buongiorno (ASME J. Heat Transfer 128, 240 (2006) model in terms of nonlinear governing partial differential equations and transformed into dimensionless ordinary differential equations by using similarity transformation and the solution is calculated using the numerical scheme known as the Chebyshev spectral collocation method. The main interest of this study is the region of the boundary layer where viscous effects are dominant. Dual solutions are reported against the shrinking parameter in which the first solution is stable due to positive eigenvalues and the second is unstable due to negative eigenvalues and ranges of these solutions are effected by the suction parameter which is discussed using graphs and tables. The effects of dimensionless parameters, namely, velocity ratio, suction, Schmidt number, Prandtl number, thermophoresis and Brownian motion on temperature and concentration profiles, skin friction coefficient and Nusselt number are also shown using graphs. For the validity of the applied scheme, a comparison is established with published studies in the limiting case. Through the results, it is concluded that temperature and concentration increase by increasing the values of the thermophoresis parameter and the opposite behaviour is observed in the case of Brownian motion and Schmidt number. Skin friction coefficient, Nusselt and Sherwood numbers increase on increasing the suction parameter. Also, an enhancement in temperature and concentration profiles is observed in the presence of Newtonian heating parameter.

Keywords

Nanofluid nonlinear stretching / shrinking sheet suction Newtonian heating boundary condition 

PACS

47.10.ad 47.15.Cb 44.20.+b 

References

  1. 1.
    S U S Choi, ASME Int. Mech. Eng. 66, 99 (1995)Google Scholar
  2. 2.
    J Buongiorno, ASME J. Heat Transfer. 128, 240 (2006)CrossRefGoogle Scholar
  3. 3.
    D A Nield and A V Kuznetsov, Int. J. Heat Mass Transf. 52, 5792 (2009)CrossRefGoogle Scholar
  4. 4.
    W Daungthongsuk and S Wongwises, Renew. Sust. Eng. Rev. 11, 797 (2007)CrossRefGoogle Scholar
  5. 5.
    X Q Wang and A S Mujumdar, Braz. J. Chem. Eng. 25, 613 (2008)CrossRefGoogle Scholar
  6. 6.
    X Q Wang and A S Mujumdar, Braz. J. Chem. Eng. 25, 631 (2008)CrossRefGoogle Scholar
  7. 7.
    M Mustafa, T Hayat, I Pop, S Asghar and S Obaidat, Int. J. Heat Mass Transf. 54, 5588 (2011)CrossRefGoogle Scholar
  8. 8.
    P K Kameswaran, P Sibanda, C Ram Reddy and P V S N Murthy, Bound. Value Probl. 1, 188 (2013)CrossRefGoogle Scholar
  9. 9.
    N Bachok, A Ishak and I Pop, Nanoscale Res. Lett. 6, 623 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    S Mansur, A Ishak and I Pop, Proc. Inst. Mech. Eng. E: J. Mech. Eng. 231, 172 (2015)CrossRefGoogle Scholar
  11. 11.
    D Pal, G Mandal and K Vajravalu, Commun. Numer. Anal. 1, 30 (2015)CrossRefGoogle Scholar
  12. 12.
    Z Abbas, M Sheikh and I Pop, J. Taiwan Inst. Chem. Eng. 55, 69 (2015)CrossRefGoogle Scholar
  13. 13.
    D Pal and G Mandal, J. Pet. Sci. Eng. 126, 16 (2015)CrossRefGoogle Scholar
  14. 14.
    S Naramgari and C Sulochana, Alexandria Eng. J. 55, 819 (2016)CrossRefGoogle Scholar
  15. 15.
    I Mustafa, T Javed and A Ghaffari, J. Mol. Liq. 219, 526 (2016)CrossRefGoogle Scholar
  16. 16.
    S K Nandy and I Pop, Int. Commun. Heat Mass Transf. 53, 50 (2014)CrossRefGoogle Scholar
  17. 17.
    F M Hady, F S Ibrahim, S M Abdel-Gaied and M R Eid, Nanoscale Res. Lett. 7, 229 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    P Rana and R Bhargava, Commun. Nonlinear Sci. Numer. Simul. 17, 212 (2012)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    K Zaimi, A Ishak and I Pop, Sci. Rep. 4, 4404 (2014) ADSCrossRefGoogle Scholar
  20. 20.
    N Bachok, A Ishak and I Pop, Int. J. Heat Mass Transf. 55, 8122 (2012)CrossRefGoogle Scholar
  21. 21.
    A Malvandi, F Hedayati and G Domairry, J. Thermodyn. 2013, Article ID 764827 (2013) Google Scholar
  22. 22.
    I Anwar, S Shafie and M Z Salleh, Walailak J. Sci. Tech. 11, 569 (2014)Google Scholar
  23. 23.
    F Mabood, W A Khan and A M Ismail, J. Magn. Magn. Mater. 374, 569 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    D Pal and G Mandal, Powder Technol. 279, 61 (2015)CrossRefGoogle Scholar
  25. 25.
    J A Khan, M Mustafa, T Hayat and A Alsaedi, Int. J. Heat Mass Transf. 86, 158 (2015)CrossRefGoogle Scholar
  26. 26.
    N C Peddisetty, Pramana – J. Phys. 87(4): 62 (2016)ADSCrossRefGoogle Scholar
  27. 27.
    A A Afify and M A El-Aziz, Pramana – J. Phys. 88(2): 31 (2017)ADSCrossRefGoogle Scholar
  28. 28.
    T Hayat, M Waqas, S A Shehzad and A Alsaedi, Pramana – J. Phys. 86(1), 3 (2016)ADSCrossRefGoogle Scholar
  29. 29.
    Y S Daniel, Z A Aziz, Z Ismail and F Salah, Aust. J. Mech. Eng. 16, 213 (2018) Google Scholar
  30. 30.
    M Z Salleh, R Nazar and I Pop, Chem. Eng. Commun. 196, 987 (2009) CrossRefGoogle Scholar
  31. 31.
    J H Merkin, R Nazar and I Pop, J. Eng. Math. 74, 53 (2012) CrossRefGoogle Scholar
  32. 32.
    M Z Salleh, R Nazar and I Pop, J. Taiwan Inst. Chem. Eng. 41, 651 (2010)CrossRefGoogle Scholar
  33. 33.
    M K A Mohamed, M Z Salleh, R Nazar and A Ishak, Sains Malays. 41, 1467 (2012)Google Scholar
  34. 34.
    N Bachok, A Ishak and I Pop, J. Franklin Inst. 350, 2736 (2013) MathSciNetCrossRefGoogle Scholar
  35. 35.
    O D Makinde and A Aziz, Int. J. Therm. Sci. 50, 1326 (2011)CrossRefGoogle Scholar
  36. 36.
    N A Yacob, A Ishak, I Pop and K Vajravelu, Nanoscale Res. Lett. 6, Article ID 314 (2011) Google Scholar
  37. 37.
    M Mustafa, M Nawaz, T Hayat and A Alsaedi, J. Aerosp. Eng. 27, 04014006 (2014)CrossRefGoogle Scholar
  38. 38.
    O D Makinde, W A Khan and Z H Khan, Int. J. Heat Mass Transf. 62, 526 (2013)CrossRefGoogle Scholar
  39. 39.
    M M Rahman and I A Eltayeb, Meccanica 48, 601 (2013)MathSciNetCrossRefGoogle Scholar
  40. 40.
    W Ibrahim and O D Makinde, J. Aerosp. Eng. 29, 04015037-11 (2016)CrossRefGoogle Scholar
  41. 41.
    F Mabood, N Pochai and S Shateyi, J. Eng. 11, Article ID 5874864 (2016) Google Scholar
  42. 42.
    M H Khan Hashim and A S Alshomrani, PLoS One 11, e0157180 (2016)CrossRefGoogle Scholar
  43. 43.
    K Y Bing, A Hussanan, M K A Mohamed, N M Sarif, Z Ismail and M Z Salleh, AIP Conf. Proc. 1830, 020022 (2017)CrossRefGoogle Scholar
  44. 44.
    P D Weidman, D G Kubitschek and A M J Davis, Int. J. Eng. Sci. 44, 730 (2006)CrossRefGoogle Scholar
  45. 45.
    N Najib, N Bachok, N Md Arifin and F Md Ali, Appl. Sci. 8, 642 (2018)CrossRefGoogle Scholar
  46. 46.
    A V Rosca and I Pop, Int. J. Heat Mass Transf. 60, 355 (2012)CrossRefGoogle Scholar
  47. 47.
    A Postelnicu and I Pop, Appl. Math. Comput. 217, 4359 (2011)MathSciNetGoogle Scholar
  48. 48.
    I S Awaludin, P D Weidman and A Ishak, AIP Adv. 6, 045308 (2016)ADSCrossRefGoogle Scholar
  49. 49.
    N S Ismail, N M Arifin, N Bachok and N Mahiddin, AIP Conf. Proc. 1739, 020023 (2016)CrossRefGoogle Scholar
  50. 50.
    N F Fauzi, S Ahmad and I Pop, Alexandria Eng. J. 54, 929 (2015)CrossRefGoogle Scholar
  51. 51.
    S D Harris, D B Ingham and I Pop, Trans. Porous Media 77, 267 (2009)Google Scholar
  52. 52.
    J P Boyd, Chebyshev and Fourier spectral methods (Springer, Berlin, 2000)Google Scholar
  53. 53.
    C Canuto, M Y Hossaini, A Quartcroni and T A Zang, Spectral methods in fluid dynamics (Springer, Berlin, 1987)Google Scholar
  54. 54.
    T Javed and I Mustafa, Asia Pac. J. Chem. Eng. 10, 184 (2015)Google Scholar
  55. 55.
    Y Jaluria, Computer methods for engineering (Allyn and Bacon Inc, Boston, 1988)zbMATHGoogle Scholar
  56. 56.
    C Y Wang, Int. J. Nonlinear Mech. 43, 377 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  • Irfan Mustafa
    • 1
  • Tariq Javed
    • 2
  • Abuzar Ghaffari
    • 3
    Email author
  • Hammad Khalil
    • 3
  1. 1.Department of MathematicsAllama Iqbal Open UniversityIslamabad Pakistan
  2. 2.Department of Mathematics and Statistics, FBASInternational Islamic UniversityIslamabad Pakistan
  3. 3.Department of MathematicsUniversity of EducationLahore (Attock Campus, 43600)Pakistan

Personalised recommendations