Advertisement

Pramana

, 93:35 | Cite as

The electronic and transport properties of Li-doped graphene nanoribbons: An ab-initio approach

  • Satyendra Singh ChauhanEmail author
  • Shobhna Ferwani
  • Pankaj Srivasatava
Article
  • 16 Downloads

Abstract

The metal-to-semiconductor transition has been noticed in graphene nanoribbons (GNRs) with various novel electronic and structural characteristics. The prospective and scope of GNRs for an array of implications could be spread significantly by this transition. Based on density functional theory (DFT) calculations, we studied the electronic and transport properties of zig-zag GNRs doped with lithium (Li) along with different edge morphology. Zig-zag nanoribbons are known to exhibit metallic behaviour without using spin. The structural properties, namely, edge state, doping and ribbon width, can be considered to affect the electronic properties of GNR structures. In this study, the changes in the electronic properties by doping a Li atom with various atomic percentages (16.6%, 33.3%, 50% and 66.6%) were investigated. Calculations were done by employing the local density approximation (LDA) based on DFT. In the presence of unique edge states, the edge-modified systems exhibit a noticeable change with prominent and better Li mobility. As a result, it has been observed that substituting two Li atoms at the carbon edges is more predominant compared to other doping configurations. We expect that our peculiar results will have potential applications in energy conversion, solar cells and thermoelectric devices.

Keywords

Graphene nanoribbons electronic structures transport properties doped 

PACS Nos

62.23.Kn 68.65.–k 68.65.Pq 68.90.+g 

Notes

Acknowledgements

This work is funded by the M.P. Council of Science and Technology, Bhopal (India) (R and D file No. A / RD / RP-2 / 2014-15 / 230). The authors are also thankful to the Computational Nano Science and Technology Lab (CNTL) at the ABV Indian Institute of Information Technology and Management (ABV-IIITM), Gwalior for providing computational facility at their centre.

References

  1. 1.
    O Leenaerts, B Partoens and F M Peeters, J. Phys. Rev. B 77, 125416 (2008)CrossRefADSGoogle Scholar
  2. 2.
    L Firlej, S Z Roszak, B Kuchta, P Pfeifer and C Wexler, J. Chem. Phys. 131, 164702 (2009)CrossRefADSGoogle Scholar
  3. 3.
    M Khantha, N A Cordero, L M Molina, J A Alonso and L A Girifalco, Phys. Rev. B 70, 125422 (2004)CrossRefADSGoogle Scholar
  4. 4.
    K Geim and K S Novoselov, Nat. Mater. 6, 183 (2007)CrossRefADSGoogle Scholar
  5. 5.
    P Avouris, Z Chen and V Perebeinos, Nat. Nanotechnol. 2, 605 (2007)CrossRefADSGoogle Scholar
  6. 6.
    Y W Son, M L Cohen and S G Louie, Nature 444, 347 (2006)CrossRefADSGoogle Scholar
  7. 7.
    K Wakabayashi, Phys. Rev. B 64, 125428 (2008)CrossRefADSGoogle Scholar
  8. 8.
    V Barone, O Hod and G E Scuseria, Nano Lett. 6(12), 2748 (2006)CrossRefADSGoogle Scholar
  9. 9.
    D A Areshkin, D Gunlycke and C T White, Nano Lett. 7(1), 204 (2007)CrossRefADSGoogle Scholar
  10. 10.
    X Li, X Wang, L Zhang, S Lee and H Dai, Science 319(5867), 1229 (2008)CrossRefADSGoogle Scholar
  11. 11.
    V Georgakilas, J A Perman, J Tucek and R Zboril, Chem. Rev. 115(11), 4744 (2015)CrossRefGoogle Scholar
  12. 12.
    K S Novoselov, A K Geim, S V Morozov, D Jiang, M I Katsnelson, I V Grigorieva, S V Dubonos and A A Firsov, Nature 438, 197 (2005)CrossRefADSGoogle Scholar
  13. 13.
    S S Chauhan, P Srivastava and A K Shrivastava, Solid State Commun. 154, 69 (2013)CrossRefADSGoogle Scholar
  14. 14.
    A A Balandin, S Ghosh, W Bao, I Calizo, D Teweldebrhan, F Miao and C N Lau, Nano Lett. 8, 902 (2008)CrossRefADSGoogle Scholar
  15. 15.
    N Gorjizadeh and Y Kawazoe, J. Nanomater. 7, 513501 (2010)Google Scholar
  16. 16.
    C L Kane and E J Mele, Phys. Rev. Lett. 95, 226801 (2005)CrossRefADSGoogle Scholar
  17. 17.
    Y Zhou, X Zu, F Gao, H Xiao and H Lv, J. Appl. Phys. 105, 104311 (2009)CrossRefADSGoogle Scholar
  18. 18.
    M Wu, E Liu and J Jiang, Appl. Phys. Lett. 93, 082504 (2008)CrossRefADSGoogle Scholar
  19. 19.
    Y Zhou, X Zu, F Gao, H Lv and H Xiao, Appl. Phys. Lett. 95, 123119 (2009)CrossRefADSGoogle Scholar
  20. 20.
    G Kim and S H Jhi, J. Phys. Chem. C 113(47), 20499 (2009)CrossRefGoogle Scholar
  21. 21.
    Y Li, G Zhao, C Liu, Y Wang, J Sun, Y Gu, Y Wang and Z Zeng, Int. J. Hydrogen Energy 37, 5754 (2012)CrossRefGoogle Scholar
  22. 22.
    Z Fang, S Li, Y Gong, W Liao, S Tian, C Shan and C He, J. Saudi Chem. Soc. 18(4), 299 (2014)CrossRefGoogle Scholar
  23. 23.
    I Mobasherpour, E Salahi and M Ebrahimi, J. Saudi Chem. Soc. 18, 792 (2014)CrossRefGoogle Scholar
  24. 24.
    C L Phillips, C S Yah, S E Iyuke, K Rumbold and V Pillay, J. Saudi Chem. Soc. 19, 147 (2015)CrossRefGoogle Scholar
  25. 25.
    H A Asmaly, B Abussaud, Ihsanullah, T A Saleh, V K Gupta and M A Atieh, J. Saudi Chem. Soc. 19, 511 (2015)Google Scholar
  26. 26.
    C Gong, G Lee, B Shan, E M Vogel, R M Wallace and K Cho, J. Appl. Phys. 108, 123711 (2010)CrossRefADSGoogle Scholar
  27. 27.
    D Zhao, G Sheng, C Chen and X Wang, J. Appl. Catal. B 111, 303 (2012)CrossRefGoogle Scholar
  28. 28.
    P K Gogoi, P E Trevisanutto, M Yang, I Santoso, T C Asmara, A Terentjevs, F D Sala, M B H Breese, T Venkatesan, Y P Feng, K P Loh, A H C Neto and A Rusydi, Phys. Rev. B 91, 035424 (2015)CrossRefADSGoogle Scholar
  29. 29.
    R Requist, P M Sheverdyaeva, P Moras, S K Mahatha, C Carbone and E Tosatti, Phys. Rev. B 91, 045432 (2015)CrossRefADSGoogle Scholar
  30. 30.
    K S Novoselov et al, Nature 438(7065), 197 (2005)CrossRefADSGoogle Scholar
  31. 31.
    I Meric, M Y Han, A F Young, B Ozyilmaz, P Kim and K L Shepard, Nat. Nanotechnol. 3(11), 654 (2008)CrossRefADSGoogle Scholar
  32. 32.
    S Y Zhou, G-H Gweon, A V Fedorov, P N First, W A De Heer, D H Lee, F Guinea, A H Castro Neto and A Lanzara, Nat. Mater. 6, 770 (2007)CrossRefADSGoogle Scholar
  33. 33.
    K C Yung, M P Pierpoint and F V Kusmartev, J. Contemp. Phys. 54, 233 (2013)CrossRefADSGoogle Scholar
  34. 34.
    M Y Han, B Özyilmaz, Y Zhang and P Kim, Phys. Rev. Lett. 98, 206805 (2007)CrossRefADSGoogle Scholar
  35. 35.
    P A Denis, Chem. Phys. Lett. 492(4–6), 251 (2010)CrossRefADSGoogle Scholar
  36. 36.
    X Wang, X Li, Y Yoon, P K Weber, H Wang, J Guo and H Dai, Science 324, 768 (2009)CrossRefADSGoogle Scholar
  37. 37.
    P Shemella and S K Nayak, Appl. Phys. Lett. 94, 2101 (2009)CrossRefGoogle Scholar
  38. 38.
    D Sen, R Thapa and K K Chattopadhyay, J. Chem. Phys. Chem. 15(12), 2542 (2014)CrossRefGoogle Scholar
  39. 39.
    S S Chauhan, P Srivastava and A K Shrivastava, Appl. Nanosci. 4(4), 461 (2014)CrossRefADSGoogle Scholar
  40. 40.
    P Rani, S Sharma and V K Jindal, Emerging paradigms in nanoscience (Pearson), ISBN: 978-81-317-8991-9Google Scholar
  41. 41.
    X Deng, Y Wu, J Dai, D Kang and D Zhang, Phys. Lett. A 375(44), 3890 (2011)CrossRefADSGoogle Scholar
  42. 42.
    J Dai, J Yuan and P Giannozzi, Appl. Phys. Lett. 95, 232105 (2009)CrossRefADSGoogle Scholar
  43. 43.
    P A Denis, J. Mater. Sci. 52(3), 1348 (2017)CrossRefADSGoogle Scholar
  44. 44.
    P A Denis, J. Phys. Chem. C 115(27), 13392 (2011)CrossRefGoogle Scholar
  45. 45.
    S Ullah, P A Denis and F Sato, Appl. Mater. Today 9, 333 (2017)CrossRefGoogle Scholar
  46. 46.
    J M Zhang, W T Song, K W Xu and J I Vincent, Comput. Mater. Sci. 95, 429 (2014)CrossRefGoogle Scholar
  47. 47.
    M S Khan, R Ratn and A Srivastava, Pramana – J. Phys. 89: 9 (2017)CrossRefADSGoogle Scholar
  48. 48.
    J Guan, W Chen, Y F Li, G T Yu, Z M Shi, X R Huang, C C Sun and Z F Chen, J. Adv. Funct. Mater. 23, 1507 (2013)CrossRefGoogle Scholar
  49. 49.
    J P Perdew and A Zunger, Phys. Rev. B 23, 5048 (1981)CrossRefADSGoogle Scholar
  50. 50.
    C Janiak, R Hoffmann, P Sjovall and B Kasemo, Langmuir 9, 3427 (1993)CrossRefGoogle Scholar
  51. 51.
    X Fan, W Zheng and J Kuo, J. ACS Appl. Mater. Interfaces 4, 2432 (2012)CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.IITM, ITM Group of Institutions (Technical Campus)GwaliorIndia
  2. 2.Atal Bihari Vajpai Indian Institute of Information Technology and ManagementGwaliorIndia

Personalised recommendations