, 93:36 | Cite as

Uranium(IV) incorporation into inverse spinel magnetite (\(\hbox {FeFe}_{2}\hbox {O}_{4}\)): A charge-balanced substitution case analysis

  • Zaihong Wang
  • Qingyun ChenEmail author
  • Kaimin Shih
  • Changzhong Liao
  • Lielin Wang
  • Hua Xie
  • Yantao Luo


Magnetite has gained significant attention owing to its good radionuclide solid solution and recovery capacity. In this paper, first-principle calculations are adopted to evaluate and analyse the formation energies, mechanical stabilities, bonding behaviours and magnetic properties of U(IV) ions incorporated into the magnetite lattice with different charge-balanced cases. The case indicated by \(B_{1}\), adding a U(IV) ion in an octahedron site and generating an octahedron Fe(III) ion vacancy, is most favourable for U(IV) incorporation into the magnetite lattice. Moreover, the corresponding models (named \(B_{1}\), \(C_{1}\) and D) for different amounts of U(IV) incorporation satisfy mechanical stability. The bond population and Mulliken charge population calculations show that the ionic bonding strength of Fe–O and \(\hbox {U}^{\mathrm{IV}}\)–O bonds is stronger in pure magnetite compared to the mentioned U(IV)-doped magnetite models. The spin-polarised density of states of U(IV)-doped magnetites are asymmetrical for the spin-up part and the spin-down part, indicating that the mentioned U(IV)-doped magnetites have good magnetic properties. Our work is expected to provide new ideas for the disposal of U(IV).


Radionuclide first principle charge-balanced case U(IV)-doped magnetite magnetism 


05.50.+q 21.10.Hw 25.40.Kv 13.40.Em 



This work was supported by the National Natural Science Foundation of China (11702270), National Training Program of Innovation and Entrepreneurship for Undergraduates (201710619041), Scientific Research Fund of SiChuan Provincial Education Department (16Za0129), Longshan Academic Talent Research Support Program of the Southwest University of Science and Technology (17LZX608) and the Innovation Fund of Southwest University of Science and Technology (jz18-023).


  1. 1.
    W Um, H S Chang, J P Icenhower, W W Lukens, R J Serne, N P Qafoku, J H Westsik, E C Buck and S C Smith, Environ. Sci. Technol. 45, 4904 (2011)CrossRefADSGoogle Scholar
  2. 2.
    W Um, H S Chang, J P Icenhower, W W Lukens, R J Serne, N P Qafoku, R K Kukkadapu and J H Westsik, J. Nucl. Mater. 429, 201 (2012)CrossRefADSGoogle Scholar
  3. 3.
    J M McBeth, J R Lloyd, G T W Law, F R Livens, I T Burke and K Morris, Mineral Mag. 75, 2419 (2011)CrossRefGoogle Scholar
  4. 4.
    S A Luksic, B J Riley, M Schweiger and P Hrma, J. Nucl. Mater. 466, 526 (2015)CrossRefADSGoogle Scholar
  5. 5.
    P Hrma, J V Crum, P R Bredt, L R Greenwood, B W Arey and H D Smith, J. Nucl. Mater. 345, 31 (2005)CrossRefADSGoogle Scholar
  6. 6.
    A A Akatov, B S Nikonov, B I Omel’Yanenko, S V Stefanovsky and J C Marra, Glass Phys. Chem. 35, 245 (2009)CrossRefGoogle Scholar
  7. 7.
    A A Akatov, B S Nikonov, B I Omel’Yanenko, O I Stefanovskaya, S V Stefanovsky, D Y Suntsov and J C Marra, Glass Phys. Chem. 36, 45 (2010)CrossRefGoogle Scholar
  8. 8.
    I V Pylypchuk, D Kołodyńska, M Kozioł and P P Gorbyk, Nanoscale Res. Lett. 11, 168 (2016)CrossRefADSGoogle Scholar
  9. 9.
    I Munier, J L Crovisier, B Grambow, B Fritz and A Clément, J. Nucl. Mater. 324, 97 (2004)CrossRefADSGoogle Scholar
  10. 10.
    P Frugier, T Chave, S Gin and J E Lartigue, J. Nucl. Mater. 392, 552 (2009)CrossRefADSGoogle Scholar
  11. 11.
    G Yang, S Cook, R J Hand and G Möbus, J. Eur. Ceram. Soc. 30, 831 (2010)CrossRefGoogle Scholar
  12. 12.
    W Huan, C Cheng, Y Yang, H Yuan and Y Li, J. Nanosci. Nanotechnol. 12, 4621 (2012)CrossRefGoogle Scholar
  13. 13.
    Z Qi, T P Joshi, R Liu, H Liu and J Qu, J. Hazard. Mater. 329, 193 (2017)CrossRefGoogle Scholar
  14. 14.
    A G Kumbhar, K Kishore, G Venkateswaran and V Balaji, Hydrometallurgy 68, 171 (2003)CrossRefGoogle Scholar
  15. 15.
    T A Marshall, K Morris, G T W Law, J F Mosselmans, P Bots, S A Parry and S Shaw, Environ. Sci. Technol. 48, 11853 (2014)CrossRefADSGoogle Scholar
  16. 16.
    F N Smith, W Um, C D Taylor, D S Kim, M J Schweiger and A A Kruger, Environ. Sci. Technol. 50, 5216 (2016)CrossRefADSGoogle Scholar
  17. 17.
    F N Smith, C D Taylor, W Um and A A Kruger, Environ. Sci. Technol. 49, 13699 (2015)CrossRefADSGoogle Scholar
  18. 18.
    F N Skomurski, K M Rosso, K M Krupka and B P McGrail, Environ. Sci. Technol. 44, 5855 (2010)CrossRefADSGoogle Scholar
  19. 19.
    S Kerisit, A R Felmy and E S Ilton, Environ. Sci. Technol. 45, 2770 (2011)CrossRefADSGoogle Scholar
  20. 20.
    M Suewattana and D J Singh, Phys. Rev. B 82, 014114 (2010)CrossRefADSGoogle Scholar
  21. 21.
    B Tu, H Wang, X Liu, W Wang and Z Fu, J. Am. Ceram. Soc. 96, 1937 (2013)CrossRefGoogle Scholar
  22. 22.
    B Tu, H Wang, X Liu, S A Khan, W Wang and Z Fu, J. Appl. Phys. 115, 223511 (2014)CrossRefADSGoogle Scholar
  23. 23.
    K Glazyrin, C McCammon, L Dubrovinsky, M Merlini, K Schollenbruch, A Woodland and M Hanfland, Am. Mineral. 97, 128 (2012)CrossRefADSGoogle Scholar
  24. 24.
    M C Payne, M P Teter, D C Allan, T A Arias and J D Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992)CrossRefADSGoogle Scholar
  25. 25.
    J P Perdew, K Burke and M Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)CrossRefADSGoogle Scholar
  26. 26.
    S L Dudarev, G A Botton, S Y Savrasov, C J Humphreys and A P Sutton, Phys. Rev. B 57, 150 (1998)CrossRefADSGoogle Scholar
  27. 27.
    Z Zhang and S Satpathy, Phys. Rev. B 44, 13319 (1991)CrossRefADSGoogle Scholar
  28. 28.
    S L Dudarev, D N Manh and A P Sutton, Philos. Mag. 75, 613 (1997)CrossRefADSGoogle Scholar
  29. 29.
    V David, Phys. Rev. B 41, 7892 (1990)CrossRefGoogle Scholar
  30. 30.
    G Kresse and J Hafner, J. Phys.: Condens. Matter 6, 8245 (1994)ADSGoogle Scholar
  31. 31.
    H J Monkhorst and J D Pack, Phys. Rev. B 13, 5188 (1976)MathSciNetCrossRefADSGoogle Scholar
  32. 32.
    Y Z Liu, Y H Jiang, J D Xing, R Zhou and J Feng, J. Alloys Compd. 648, 874 (2015)CrossRefGoogle Scholar
  33. 33.
    F Mouhat and F X Coudert, Phys. Rev. B 90, 224104 (2014)CrossRefADSGoogle Scholar
  34. 34.
    Y Liu, J Xing, Y Li, J Tan, S Liang and J Yan, J. Mater. Res. 31, 3805 (2016)CrossRefADSGoogle Scholar
  35. 35.
    A Roldan, D Santoscarballal and N H D Leeuw, J. Chem. Phys. 138, 204712 (2013)CrossRefADSGoogle Scholar
  36. 36.
    A M Hofmeister, B Wopenka and A J Locock, Geochim. Cosmochim. Acta 68, 4485 (2004)CrossRefADSGoogle Scholar
  37. 37.
    E Madelung and R Fuchs, Ann. Phys. (Berlin) 370, 289 (1921)CrossRefADSGoogle Scholar
  38. 38.
    H J Reichmann and S D Jacobsen, Am. Mineral. 89, 1061 (2004)CrossRefADSGoogle Scholar
  39. 39.
    C Gerard and L Pizzagalli, Pramana – J. Phys. 84, 1041 (2015)Google Scholar
  40. 40.
    S F Pugh, Philos. Mag. 45, 823 (2009)CrossRefGoogle Scholar
  41. 41.
    C Y Li, Y Huang and X M Zheng, Pramana – J. Phys. 87: 22 (2016)Google Scholar
  42. 42.
    G Stefanou, D Sakellari, K Simeonidis and T Kalabaliki, IEEE Trans. Magn. 50, 1 (2014)CrossRefGoogle Scholar
  43. 43.
    R D Shannon, Acta Crystallogr. A 32, 751 (1976)CrossRefADSGoogle Scholar
  44. 44.
    M D Segall, R Shah, C J Pickard and M C Payne, Phys. Rev. B 54, 16317 (1996)CrossRefADSGoogle Scholar
  45. 45.
    M Sun and Y Peng, Appl. Surf. Sci. 307, 158 (2014)CrossRefGoogle Scholar
  46. 46.
    J Noh, O I Osman, S G Aziz, P Winget and J L Brédas, Sci. Technol. Adv. Mater. 15, 044202 (2014)CrossRefGoogle Scholar
  47. 47.
    S Jain, A O Adeyeye and D Y Dai, J. Appl. Phys. 95, 7237 (2004)CrossRefADSGoogle Scholar
  48. 48.
    X D Wen, R L Martin, L E Roy, G E Scuseria, S P Rudin, E R Batista, T M McCleskey, B L Scott, E Bauer, J J Joyce and T Durakiewicz, J. Chem. Phys. 137, 154707 (2012)CrossRefADSGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  • Zaihong Wang
    • 1
  • Qingyun Chen
    • 1
    Email author
  • Kaimin Shih
    • 2
  • Changzhong Liao
    • 2
  • Lielin Wang
    • 1
  • Hua Xie
    • 1
  • Yantao Luo
    • 1
  1. 1.School of National Defence Science and TechnologySouthwest University of Science and TechnologyMianyangPeople’s Republic of China
  2. 2.Department of Civil EngineeringThe University of Hong KongHong KongPeople’s Republic of China

Personalised recommendations