, 93:38 | Cite as

Lie symmetries, conservation laws and solitons for the AB system with time-dependent coefficients in nonlinear optics or fluid mechanics

  • Song-Hua Hu
  • Bo TianEmail author
  • Xia-Xia Du
  • Lei Liu
  • Chen-Rong Zhang


In this paper, the AB system with time-dependent coefficients for the ultrashort pulses in an inhomogeneous optical fibre or the marginally unstable baroclinic wave packets in an atmospheric or oceanic system is investigated via the Lie symmetry analysis. We obtain the Lie symmetries, reduced equations and group-invariant solutions. The nonlinear self-adjointness of the AB system is proved, and the conservation laws associated with the Lie symmetries are constructed. For the amplitude of the electric field in the inhomogeneous optical fibre or the amplitude of the wave packet in the atmospheric or oceanic system, and for the quantity associated with the occupation number which gives a measure of the atomic inversion in the inhomogeneous optical fibre or the quantity measuring the correction of the basic flow in the atmospheric or oceanic system, we get some solitons through the Lie symmetry transformations, whose amplitudes, widths, velocities and backgrounds are different from those of the given ones and can be adjusted via the Lie group parameters. We find a family of the ultrashort pulses propagating in the inhomogeneous optical fibre or a family of the marginally unstable baroclinic wave packets propagating in the atmospheric or oceanic system.


Nonlinear optics fluid mechanics AB system Lie symmetry analysis conservation laws soliton 


05.45.Yv 47.35.Fg 02.30.Jr 



This work has been supported by the National Natural Science Foundation for China under Grant Nos 11772017, 11805020, 11272023 and 11471050, by the Fund for State Key Laboratory for Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), China (IPOC: 2017ZZ05) and by the Fundamental Research Funds for the Central Universities of China under Grant No. 2011BUPTYB02.


  1. 1.
    Q M Huang and Y T Gao, Nonlinear Dyn. 89, 2855 (2017)CrossRefGoogle Scholar
  2. 2.
    X Y Gao, Ocean Eng. 96, 245 (2015)CrossRefGoogle Scholar
  3. 3.
    P Jin, C A Bouman and K D Sauer, IEEE Trans. Comput. Imaging 1, 200 (2015)CrossRefGoogle Scholar
  4. 4.
    W X Ma, J. Fudan Univ. (Nat. Sci.) 33, 319 (1994)Google Scholar
  5. 5.
    H P Chai, B Tian, J Chai and Z Du, Pramana – J. Phys. 92: 9 (2018)CrossRefADSGoogle Scholar
  6. 6.
    X Y Xie and G Q Meng, Nonlinear Dyn. 93, 779 (2018)CrossRefGoogle Scholar
  7. 7.
    X Y Xie and G Q Meng, Chaos Solitons Fractals  107, 143 (2018)MathSciNetCrossRefADSGoogle Scholar
  8. 8.
    X Y Xie and G Q Meng, Appl. Math. Lett. 92, 201 (2019)MathSciNetCrossRefGoogle Scholar
  9. 9.
    G W Wang, T Z Xu, S Johnson and A Biswas, Astrophys. Space Sci. 23, 317 (2014)CrossRefADSGoogle Scholar
  10. 10.
    J J Su and Y T Gao, Eur. Phys. J. Plus 133, 96 (2018)CrossRefGoogle Scholar
  11. 11.
    G F Deng and Y T Gao, Eur. Phys. J. Plus 132, 255 (2017)CrossRefGoogle Scholar
  12. 12.
    Y J Feng, Y T Gao and X Yu, Nonlinear Dyn. 91, 29 (2018)CrossRefGoogle Scholar
  13. 13.
    S Y Lou, X R Hu and C Yong, J. Phys. A 45, 155209 (2012)MathSciNetCrossRefADSGoogle Scholar
  14. 14.
    W X Ma and Y Zhou, J. Differ. Equ. 264, 2633 (2018)CrossRefADSGoogle Scholar
  15. 15.
    S T Chen and W X Ma, Front. Math. China 13, 525 (2018)MathSciNetCrossRefGoogle Scholar
  16. 16.
    S Manukure, Y Zhou and W X Ma, Comput. Math. Appl. 75, 2414 (2018)MathSciNetCrossRefGoogle Scholar
  17. 17.
    J B Zhang and W X Ma, Comput. Math. Appl. 74, 591 (2017)MathSciNetCrossRefGoogle Scholar
  18. 18.
    J J Su, Y T Gao and C C Ding, Appl. Math. Lett. 88, 201 (2019)MathSciNetCrossRefGoogle Scholar
  19. 19.
    H Q Zhao and W X Ma, Comput. Math. Appl. 74, 1399 (2017)MathSciNetCrossRefGoogle Scholar
  20. 20.
    C C Ding, Y T Gao, J J Su, G F Deng and S L Jia, Wave Random Complex, in press (2019),
  21. 21.
    W X Ma, X L Yong and H Q Zhang, Comput. Math. Appl. 75, 289 (2018)MathSciNetCrossRefGoogle Scholar
  22. 22.
    T T Jia, Y Z Chai and H Q Hao, Superlattice. Microstruct. 105, 172 (2017)CrossRefADSGoogle Scholar
  23. 23.
    J Y Yang, W X Ma and Z Y Qin, Anal. Math. Phys. 8, 427 (2018)MathSciNetCrossRefGoogle Scholar
  24. 24.
    C C Ding, Y T Gao, L Hu and T T Jia, Eur. Phys. J. Plus 133, 406 (2018)CrossRefGoogle Scholar
  25. 25.
    W X Ma, J. Geom. Phys. 133, 10 (2018)MathSciNetCrossRefADSGoogle Scholar
  26. 26.
    E D Avdonina, N H Ibragimov and R Khamitova, Commun. Nonlin. Sci. Numer. Simul. 18, 2359 (2013)CrossRefGoogle Scholar
  27. 27.
    R K Gazizov, N H Ibragimov and S Yu Lukashchuk, Commun. Nonlin. Sci. Numer. Simul. 23, 153 (2015)CrossRefGoogle Scholar
  28. 28.
    G F Deng, Y T Gao and X Y Gao, Wave Random Complex 28, 468 (2018)CrossRefADSGoogle Scholar
  29. 29.
    W X Ma, Discret. Cont. Dyn. Sys. Ser. S 11, 707 (2018)Google Scholar
  30. 30.
    S Y Lou, Phys. Lett. B 302, 261 (1993)MathSciNetCrossRefADSGoogle Scholar
  31. 31.
    P J Olver, Applications of Lie groups to differential equations (Springer, New York, 1993)CrossRefGoogle Scholar
  32. 32.
    G W Bluman and Z Z Yang, J. Math. Phys. 54, 093504 (2013)MathSciNetCrossRefADSGoogle Scholar
  33. 33.
    Q M Huang, Y T Gao, S L Jia, Y L Wang and G F Deng, Nonlinear Dyn. 87, 2529 (2017)CrossRefGoogle Scholar
  34. 34.
    X Y Gao, Appl. Math. Lett. 73, 143 (2017)MathSciNetCrossRefGoogle Scholar
  35. 35.
    P J Olver, J. Fluid Mech. 125, 137 (1982)MathSciNetCrossRefADSGoogle Scholar
  36. 36.
    X Y Gao, Appl. Math. Lett. 91, 165 (2019)MathSciNetCrossRefGoogle Scholar
  37. 37.
    A M Kamchatnov and M V Pavlov, J. Phys. A 28, 3279 (1995)MathSciNetCrossRefADSGoogle Scholar
  38. 38.
    C J Mooney and G E Swaters, Geophys. Astrophys. Fluid Dyn. 82, 173 (1996)CrossRefADSGoogle Scholar
  39. 39.
    B F Feng, Physica D 297, 62 (2015)MathSciNetCrossRefADSGoogle Scholar
  40. 40.
    N Karasawa, S Nakamura, N Nakagawa, M Shibata, R Morita, H Shigekawa and M Yamashita, IEEE J. Quant. Elect. 37, 398 (2001)CrossRefADSGoogle Scholar
  41. 41.
    J E Rothenberg, Opt. Lett. 17, 1340 (1992)CrossRefADSGoogle Scholar
  42. 42.
    J K Ranka and A L Gaeta, Opt. Lett. 23, 534 (1998)CrossRefADSGoogle Scholar
  43. 43.
    G F Yu, Z W Xu, J Hu and H Q Zhao, Commun. Nonlin. Sci. Numer. Simul. 47, 178 (2017)CrossRefGoogle Scholar
  44. 44.
    J D Gibbon and M I McGuiness, Proc. R. Soc. Lond. A 377, 185 (1981)CrossRefADSGoogle Scholar
  45. 45.
    R K Dodd, J C Eilkck, J D Gibbon and H C Moms, Solitons and nonlinear wave equations (Academic Press, New York, 1982)Google Scholar
  46. 46.
    J Pedlosky, J. Atmos. Sci. 36, 1908 (1979)CrossRefADSGoogle Scholar
  47. 47.
    B K Tan and D P Yin, Adv. Atmos. Sci. 12, 439 (1995)CrossRefGoogle Scholar
  48. 48.
    Y Li and M Mu, Adv. Atmos. Sci. 13, 33 (1996)CrossRefGoogle Scholar
  49. 49.
    Y Li, Adv. Atmos. Sci. 17, 413 (2000)CrossRefGoogle Scholar
  50. 50.
    C F Wu, R H J Grimshaw and K W Chow, Chaos 25, 103113 (2015)MathSciNetCrossRefADSGoogle Scholar
  51. 51.
    Y T Gao and B Tian, Europhys. Lett. 77, 15001 (2007)CrossRefADSGoogle Scholar
  52. 52.
    R Guo and B Tian, Commun. Nonlin. Sci. Numer. Simul. 17, 3189 (2012)CrossRefGoogle Scholar
  53. 53.
    X Y Xie, B Tian, Y Jiang, W R Sun, Y Sun and Y T Gao, Commun. Nonlin. Sci. Numer. Simul. 36, 266 (2016)CrossRefGoogle Scholar
  54. 54.
    L Wang, F H Qi, B Tang and Y Y Shi, Mod. Phys. Lett. B 30, 1550264 (2016)CrossRefADSGoogle Scholar
  55. 55.
    W X Ma and M Chen, Chaos Solitons Fractals 32, 1513 (2007)MathSciNetCrossRefADSGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Information Photonics and Optical Communications, and School of ScienceBeijing University of Posts and TelecommunicationsBeijingChina
  2. 2.School of Electronic and Information EngineeringNorth China Institute of Science and TechnologyYanjiaoChina

Personalised recommendations