, 93:2 | Cite as

Analytical evaluation of cesium emission lines using laser-induced breakdown spectroscopy

  • Manjeet Singh
  • Arnab SarkarEmail author


A laser-induced breakdown spectroscopy-based method has been successfully developed to quantify cesium (Cs) in solution using spectroscopically pure graphite planchets as a sample support. As Cs is a line-poor system, only five usable Cs atomic emission lines could be found and characterised by employing high-resolution system. The calibration curves of these emission lines were constructed under optimised experimental conditions. The analytical properties of these calibration curves were evaluated based on the usable dynamic range, \(R^{2}\) of fitting, root mean square error cross-validation and limit of detection (LOD). The dynamic ranges of these five lines were found to be in correlation with the energy level involved in the transition. An LOD of 4 ppm was obtained using Cs(I) 852.11-nm line, which corresponds to 0.16 \(\mu \)g of Cs on the planchet. Based on the cross-validation approach, the best accuracy and precision (\(\sim \)6%) were obtained for 852.11 nm in <3000 ppm solutions, and the same is \(\sim \)8% for 672.33 nm and 697.33 nm in high concentrated solution of Cs.


Laser-induced breakdown spectroscopy emission spectroscopy cesium linear dynamic range 


42.62.Fi 52.38.Mf 87.64.K.– 77.84.Bw 52.25.Os 



The authors acknowledge Dr. P G Jaison, Head, Mass Spectrometry Section and Dr. S Kannan, Head, Fuel Chemistry Division, BARC, for their constant support and encouragement in LIBS work. This work was funded by the BARC, DAE.


  1. 1.
    J Lelieveld, D Kunkel and M G Lawrence, Atmos. Chem. Phys. 12(9), 4245 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    T J Yasunari, A Stohl, R S Hayano, J F Burkhart, S Eckhardt and T Yasunari, Proc. Natl. Acad. Sci. 108(49), 19530 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    Y Inomata, M Aoyama, T Tsubono, D Tsumune and K Hirose, Environ. Sci.: Process. Impacts 18(1), 126 (2016)Google Scholar
  4. 4.
    C P Kaushik, A Kumar, N S Tomar, S Wadhwa, D Mehta, R K Mishra, Jyoti Diwan, S Babu, S K Marathe, A P Jakhete, S Jain, G Anand and K Agarwal, Brief Communication, BARC Newsletter Report No. 356 (2017)Google Scholar
  5. 5.
    N L Lanza, S M Clegg, R C Wiens, R E McInroy, H E Newsom and M D Deans, Appl. Opt. 51(7), B74 (2012)CrossRefGoogle Scholar
  6. 6.
    N L Lanza, R C Wiens, S M Clegg, A M Ollila, S D Humphries, H E Newsom and J E Barefield, Appl. Opt. 49(13), C211 (2010)CrossRefGoogle Scholar
  7. 7.
    A M Ollila, J Lasue, H E Newsom, R A Multari, R C Wiens and S M Clegg, Appl. Opt. 51(7), B130 (2012)CrossRefGoogle Scholar
  8. 8.
    R C Wiens, S Maurice, J Lasue, O Forni, R B Anderson, S Clegg, S Bender, D Blaney, B L Barraclough, A Cousin, L Deflores, D Delapp, M D Dyar, C Fabre, O Gasnault, N Lanza, J Mazoyer, N Melikechi, P Y Meslin, H Newsom, A Ollila, R Perez, R L Tokar and D Vaniman, Spectrochim. Acta B 82, 1 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    A Sarkar, S K Aggarwal, K Sasibhusan and D Alamelu, Microchim. Acta 168(1–2), 65 (2010)CrossRefGoogle Scholar
  10. 10.
    A Sarkar, D Alamelu and S K Aggarwal, Talanta 78(3), 800 (2009)CrossRefGoogle Scholar
  11. 11.
    A Sarkar, D Alamelu and S K Aggarwal, J. Nucl. Mater. 384(2), 158 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    A Sarkar, D Alamelu and S K Aggarwal, Appl. Opt. 47(31), G58 (2008)CrossRefGoogle Scholar
  13. 13.
    D A Cremers, A Beddingfield, R Smithwick, R C Chinni, C R Jones, B Beardsley and L Karch, Appl. Spectrosc. 66(3), 250 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    P Fichet, P Mauchien and C Moulin, Appl. Spectrosc. 53(9), 1111 (1999)ADSCrossRefGoogle Scholar
  15. 15.
    A M Popov, A N Drozdova, S M Zaytsev, D I Biryukova, N B Zorov and T A Labutin, J. Anal. At. Spectrom. 31(5), 1123 (2016)CrossRefGoogle Scholar
  16. 16.
    V Karki, A Sarkar, M Singh, G S Maurya, R Kumar, A K Rai and S K Aggarwal, Pramana – J. Phys. 86 (6), 1313 (2016)Google Scholar
  17. 17.
    S Ikezawa, T Ueda, A Mason, O Korostynska and A Al-Shamma’a, Proceedings of the International Conference on Sensing Technology, ICST (2013) (unpublished)Google Scholar
  18. 18.
    S Ikezawa, M Wakamatsu and T Ueda, Solid State Phenom. 199, 285 (2013)CrossRefGoogle Scholar
  19. 19.
    A Metzinger, E Kovács-Széles, I Almási and G Galbács, Appl. Spectrosc. 68(7), 789 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    M Ramli, A Khumaeni, K H Kurniawan, M O Tjia and K Kagawa, Spectrochim. Acta B 132, 8 (2017)ADSCrossRefGoogle Scholar
  21. 21.
    M Singh, A Sarkar, X Mao and R E Russo, J. Nucl. Mater. 484, 135 (2017)ADSCrossRefGoogle Scholar
  22. 22.
    R L Kurucz, Kurucz Atomic Database, (23 Oct. 2018)
  23. 23.
    NIST, in NIST atomic spectral database, (23 Oct. 2018)
  24. 24.
    M Kuzuya, H Matsumoto, H Takechi and O Mikami, Appl. Spectrosc. 47(10), 1659 (1993)ADSCrossRefGoogle Scholar
  25. 25.
    B Sallé, D A Cremers, S Maurice and R C Wiens, Spectrochim. Acta B 60(4), 479 (2005)ADSCrossRefGoogle Scholar
  26. 26.
    B C Castle, K Talabardon, B W Smith and J D Winefordner, Appl. Spectrosc. 52(5), 649 (1998)ADSCrossRefGoogle Scholar
  27. 27.
    D A Cremers and L J Radziemski, Basics of LIBS plasma, in Handbook of laser-induced breakdown spectroscopy (John Wiley & Sons Ltd, UK, 2006) p. 23Google Scholar
  28. 28.
    J Hou, L Zhang, W Yin, S Yao, Y Zhao, W Ma, L Dong, L Xiao and S Jia, Opt. Express 25(19), 23024 (2017)ADSCrossRefGoogle Scholar
  29. 29.
    J-M Li, L-B Guo, C-M Li, N Zhao, X-Y Yang, Z-Q Hao, X-Y Li, X-Y Zeng and Y-F Lu, Opt. Lett. 40(22), 5224 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    D A Cremers and L J Radziemski, LIBS analytical figures of merit and calibration. in Handbook of laser-induced breakdown spectroscopy (John Wiley & Sons Ltd, UK, 2013) p. 123Google Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Fuel Chemistry DivisionBhabha Atomic Research CentreMumbaiIndia
  2. 2.Homi Bhabha National InstituteMumbaiIndia

Personalised recommendations