Advertisement

Pramana

, 92:96 | Cite as

Solitons and other solutions for coupled nonlinear Schrödinger equations using three different techniques

  • Elsayed M E Zayed
  • Abdul-Ghani Al-NowehyEmail author
  • Mona E M Elshater
Article
  • 42 Downloads

Abstract

In this paper, we apply three different techniques, namely, the sine–cosine method, the new extended auxiliary equation method and the modified simple equation method for constructing many new exact solutions with parameters as well as bright–dark, singular and other soliton solutions of the coupled nonlinear Schrödinger equations. The solutions of these coupled nonlinear equations are compared with the well-known results.

Keywords

Sine–cosine method new extended auxiliary equation method modified simple equation method exact solutions solitons and other solutions coupled nonlinear Schrödinger equations 

PACS Nos

02.30.Jr 02.30.Hq 04.20.Jb 05.45.Yv 

Notes

Acknowledgements

The authors wish to thank the editor and the referees for their comments on this paper.

References

  1. 1.
    S A El-wakil, M A Madkour and M A Abdou, Phys. Lett. A 369, 62 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    M Ekici, M Mirzazadeh, A Sonmezoglu, Q Zhou, H Triki, M Z Ullah, S P Moshokoa and A Biswas, Optik 131, 964 (2017)ADSCrossRefGoogle Scholar
  3. 3.
    Y Shi, Z Dai and D Li, Appl. Math. Comput. 210, 269 (2009)MathSciNetGoogle Scholar
  4. 4.
    N A Kudryashov and N B Loguinova, Appl. Math. Comput. 205, 396 (2008)MathSciNetGoogle Scholar
  5. 5.
    Y M Zhao, J. Appl. Math. 2014, Article ID 848069 (2014),  https://doi.org/10.1155/2014/848069 ADSMathSciNetGoogle Scholar
  6. 6.
    S Liu, Z Fu and Q Zhao, Phys. Lett. A 289, 69 (2001)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    D Lu and Q Shi, Int. J. Nonlinear Sci. 10, 320 (2010)MathSciNetGoogle Scholar
  8. 8.
    E M E Zayed and M E M El Shater, Optik 131, 1044 (2017)ADSCrossRefGoogle Scholar
  9. 9.
    B Zheng and Q Feng, Abs. Appl. Anal. 35, Article ID 249071 (2014),  https://doi.org/10.1155/2014/249071 MathSciNetCrossRefGoogle Scholar
  10. 10.
    E M E Zayed, Y A Amer and R M A Shohib, Sci. J. Math. Res. 4, 53 (2014)Google Scholar
  11. 11.
    N A Kudryashov, Phys. Lett. A 147, 287 (1990)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    C Yong and Y Zhen, Chaos Solitons Fractals 29, 948 (2006)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    S Günter, J. Mod. Phys. 2, 274 (2011)CrossRefGoogle Scholar
  14. 14.
    E J Parkes and B R Duffy, Comput. Phys. Commun. 698, 288 (2005)Google Scholar
  15. 15.
    E M E Zayed and M A M Abdelaziz, Int. J. Nonlinear Sci. Numer. Simul. 11, 595 (2010)Google Scholar
  16. 16.
    A J M Jawad, M Mirzazadeh, Q Zhou and A Biswas, Superlatt. Microstruct. 105, 1 (2017)ADSCrossRefGoogle Scholar
  17. 17.
    E M E Zayed and H M Abdel Rahman, Appl. Math. E-Note 10, 235 (2010)Google Scholar
  18. 18.
    A M Wazwaz, Comput. Math. Appl. 50, 1685 (2005)MathSciNetCrossRefGoogle Scholar
  19. 19.
    S Zhang and T Xia, Phys. Lett. A 363, 356 (2007)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    L X Li, Q E Li and L M Wang, Appl. Math. J. Chin. Univ. 25, 454 (2010)CrossRefGoogle Scholar
  21. 21.
    E M E Zayed and M A M Abdelaziz, Math. Prob. Eng. 2012, Article ID 725061 (2012),  https://doi.org/10.1155/2012/725061 MathSciNetCrossRefGoogle Scholar
  22. 22.
    E M E Zayed and K A E Alurrfi, Math. Prob. Eng. 2014, Article ID 521712 (2014),  https://doi.org/10.1155/2014/521712 MathSciNetzbMATHGoogle Scholar
  23. 23.
    X Zeng and X Yong, Phys. Lett. A 372, 6602 (2008)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    E M E Zayed, A G Al-Nowehy and M E M El Shater, Eur. Phys. J. Plus 232, 259 (2017)CrossRefGoogle Scholar
  25. 25.
    M Ekici, M Mirzazadeh, A Sonmezoglu, M Z Ullah, Q Zhou, H Triki, S P Moshokoa and A Biswas, Optik 136, 368 (2017)ADSCrossRefGoogle Scholar
  26. 26.
    M Mirzazadeh, M Ekici, A Sonmezoglu, Q Zhou, H Triki, S P Moshokoa, A Biswas and M Belic, Optik 127, 11311 (2016)ADSCrossRefGoogle Scholar
  27. 27.
    G Xu, Abst. Appl. Anal. 2014, Article ID 541370 (2014),  https://doi.org/10.1155/2014/541370 MathSciNetGoogle Scholar
  28. 28.
    E M E Zayed and K A E Alurrfi, Appl. Math. Comput. 289, 111 (2016)MathSciNetGoogle Scholar
  29. 29.
    E M E Zayed and A G Al-Nowehy, Waves Random Complex Media 27, 420 (2017)ADSCrossRefGoogle Scholar
  30. 30.
    E M E Zayed and A G Al-Nowehy, J. Part. Diff. Eqns. 29, 218 (2016)Google Scholar
  31. 31.
    M Mirzazadeh, M Ekici, A Sonomezoglu, M Esami, Q Zhou, A H Kara, D Milovic, F B Majid, A Biswas and M Belic, Nonlinear Dyn. 85, 1979 (2016)CrossRefGoogle Scholar
  32. 32.
    E Yusuföglu, A Bekir and M Alp, Chaos Solitons Fractals 37, 1193 (2008)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    H A Zedan and S J Monque, Appl. Math. E-Note 10, 103 (2010)Google Scholar
  34. 34.
    E M E Zayed and R M A Shohib, Optik 158, 970 (2018)ADSCrossRefGoogle Scholar
  35. 35.
    E M E Zayed, Appl. Math. Comput. 218, 3962 (2011)MathSciNetGoogle Scholar
  36. 36.
    E M E Zayed and A G Al-Nowehy, Z. Naturforsch. A 71, 103 (2016)CrossRefGoogle Scholar
  37. 37.
    A H Arnous, M Z Ullah, M Asma, S P Moshokoa, Q Zhou, M Mirzazadeh, A Biswas and M Belic, Optik 136, 445 (2017)ADSCrossRefGoogle Scholar
  38. 38.
    M M El-Borai, H M El-Owaidy, H M Ahmed, A H Arnous, S Moshokoa, A Biswas and M Belic, Optik 130, 324 (2017)ADSCrossRefGoogle Scholar
  39. 39.
    A J M Jawad, M D Petkovic and A Biswas, Appl. Math. Comput. 217, 869 (2010)MathSciNetGoogle Scholar
  40. 40.
    E M E Zayed and S A H Ibrahim, Chin. Phys. Lett. 29, 060201 (2012)CrossRefGoogle Scholar
  41. 41.
    S Z Hassan and M A E Abdelrahman, Pramana – J. Phys. 91: 67 (2018)ADSCrossRefGoogle Scholar
  42. 42.
    K Ayub, M Y Khan, Q M Ul-Hassan and J Ahmad, Pramana – J. Phys. 89: 45 (2017)ADSCrossRefGoogle Scholar
  43. 43.
    X J Yang, F Gao and H M Srivastava, J. Comput. Appl. Math. 339, 285 (2018)MathSciNetCrossRefGoogle Scholar
  44. 44.
    X J Yang, F Gao and H M Srivastava, Comput. Math. Appl. 73, 203 (2017)MathSciNetCrossRefGoogle Scholar
  45. 45.
    X J Yang, J A T Machado and D Baleanu, Fractals 25, 1740006 (2017)ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    X J Yang, F Gao, J A T Machado and D Baleanu, Nonlinear systems and complexity edited by K Taş, D Baleanu and J A T Machado (Springer, Cham, 2019) Vol. 24, pp. 175–191Google Scholar
  47. 47.
    X J Yang, Y S Gasimov, F Gao and N Allahverdiyeva, Proc. Inst. Math. Mech. 43, 123 (2017)Google Scholar
  48. 48.
    X J Yang, J A T Machado, D Baleanu and C Cattani, Chaos 26, 084312 (2016)ADSMathSciNetCrossRefGoogle Scholar
  49. 49.
    Y Guo, Dyn. Syst. Int. J. 32, 490 (2017)CrossRefGoogle Scholar
  50. 50.
    Y Liu, S Chen, L Wei and B Guan, Pramana – J. Phys. 91: 29 (2018)ADSCrossRefGoogle Scholar
  51. 51.
    KW Chow and D W C Lai, Pramana – J. Phys. 57, 937 (2001)ADSCrossRefGoogle Scholar
  52. 52.
    Y Z Peng, Pramana – J. Phys. 65, 177 (2005)ADSCrossRefGoogle Scholar
  53. 53.
    Z Yan, Z. Naturforsch. A 59, 29 (2004)ADSGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Mathematics Department, Faculty of SciencesZagazig UniversityZagazigEgypt
  2. 2.Mathematics Department, Faculty of Education and ScienceTaiz UniversityTaizYemen

Personalised recommendations