Advertisement

Pramana

, 93:3 | Cite as

Analytical behaviour of lump solution and interaction phenomenon to the Kadomtsev–Petviashvili-like equation

  • Mohammad Shahriari
  • Jalil ManafianEmail author
Article
  • 11 Downloads

Abstract

In this paper, we use the generalised Hirota bilinear method (GHBM). With the help of symbolic calculations and applying the used method, we solve the Kadomtsev–Petviashvili (KP)-like equation with \(p=3\) to obtain some new lump, periodic kink-wave and solitary wave solutions. All solutions have been verified with their corresponding equations with the aid of the Maple package program.

Keywords

Kadomtsev–Petviashvili-like equation generalised Hirota bilinear method lump solution periodic kink-wave solution solitary wave solution 

PACS Nos

02.60.Lj 02.70.Wz 02.90.+p 04.30.Nk 

Notes

Acknowledgements

The authors would like to thank the editor and referee for their valuable suggestions and comments.

References

  1. 1.
    B B Kadomtsev and V I Petviashvili, Sov. Phys. Dokl. 15, 539 (1970)ADSGoogle Scholar
  2. 2.
    W X Ma, Phys. Lett. A 379, 1975 (2015)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    S V Manakov, V E Zakharov, L A Bordag and V B Matveev, Phys. Lett. A 63, 205 (1977)ADSCrossRefGoogle Scholar
  4. 4.
    H Q Zhao and W X Ma, Comput. Math. Appl. 74(6), 1399 (2017)MathSciNetCrossRefGoogle Scholar
  5. 5.
    J Y Yang and W X Ma, Int. J. Mod. Phys. B 30, 1640028 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    W X Ma and Z Zhu, Appl. Math. Comput. 218, 11871 (2012)MathSciNetGoogle Scholar
  7. 7.
    J Manafian, M Lakestani and A Bekir, Pramana – J. Phys. 87: 95 (2016)Google Scholar
  8. 8.
    J Manafian and M Lakestani, Pramana – J. Phys. 87: 31 (2015)Google Scholar
  9. 9.
    M Shahriari, B N Saray, M Lakestani and J Manafian, Eur. Phys. J. Plus 133, 201 (2018)CrossRefGoogle Scholar
  10. 10.
    C T Sendi, J Manafian, H Mobasseri, M Mirzazadeh, Q Zhou and A Bekir, Nonlinear Dyn. 95, 669 (2019)CrossRefGoogle Scholar
  11. 11.
    M Lakestani and J Manafian, Opt. Quant. Electron. 50, 4 (2018)CrossRefGoogle Scholar
  12. 12.
    M Wanga, X Lia and J Zhanga, Appl. Math. Lett. 76, 21 (2018)MathSciNetCrossRefGoogle Scholar
  13. 13.
    M Kumar, A K Tiwari and R Kumar, Comput. Math. Appl. 74, 2599 (2017)MathSciNetCrossRefGoogle Scholar
  14. 14.
    H Q Zhao and W X Ma, Comput. Math. Appl. 74, 1399 (2017)MathSciNetCrossRefGoogle Scholar
  15. 15.
    X Zhang, Y Chen and Y Zhang, Comput. Math. Appl. 74, 2341 (2017)MathSciNetCrossRefGoogle Scholar
  16. 16.
    S Chakravarty, T McDowell and M Osborne, Nonlinear Sci. Numer. Simul. 44, 37 (2017)CrossRefGoogle Scholar
  17. 17.
    S T Mohyud-Din, A Irshad, N Ahmed and U Khan, Results Phys. 7, 3901 (2017)ADSCrossRefGoogle Scholar
  18. 18.
    A Salupere and M Ratas, Mech. Res. Commun. 93, 141 (2018)CrossRefGoogle Scholar
  19. 19.
    J Yua and Y Sun, Comput. Math. Appl. 72, 1556 (2016)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Y Zhang, Y B Sun and W Xiang, Appl. Math. Comput. 263, 204 (2015)MathSciNetGoogle Scholar
  21. 21.
    W G Zhang, Y N Zhao and A H Chen, Appl. Math. Comput. 259, 251 (2015)MathSciNetGoogle Scholar
  22. 22.
    N S Saini, N Kaur and T S Gill, Adv. Space Res. 55, 2873 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    A Doliwaa and R Lin, Phys. Lett. A 378, 1925 (2014)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Y P Sun, H W Tamc and B Zhu, Commun. Nonlinear Sci. Numer. Simulat. 16, 3024 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    S Yu, Appl. Math. Comput. 219, 3420 (2012)MathSciNetGoogle Scholar
  26. 26.
    L S Liam and E V Groesen, Phys. Lett. A 374, 411 (2010)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Z Dai, S Lin, H Fu and X Zeng, Appl. Math. Comput. 216, 1599 (2010)MathSciNetGoogle Scholar
  28. 28.
    S F Deng and Z Y Qin, Phys. Lett. A 357, 467 (2006)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    A M Wazwaz, Appl. Math. Comput. 201, 168 (2008)MathSciNetGoogle Scholar
  30. 30.
    X Lü, W X Ma and Y Zhou, Comput. Math. Appl. 71, 1560 (2016)MathSciNetCrossRefGoogle Scholar
  31. 31.
    W X Ma, Z Y Qin and X Lü, Nonlinear Dyn. 84, 923 (2016)CrossRefGoogle Scholar
  32. 32.
    C J Wang, Nonlinear Dyn. 84, 697 (2016)CrossRefGoogle Scholar
  33. 33.
    J Lü, S Bilige and T Chaolu, Nonlinear Dyn. 91, 1669 (2018)CrossRefGoogle Scholar
  34. 34.
    Y N Tang, S Q Tao and Q Guan, Comput. Math. Appl. 72, 2334 (2016)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Y Zhang et al, Comput. Math. Appl. 73, 246 (2017)Google Scholar
  36. 36.
    L L Huang and Y Chen, Commun. Theor. Phys. 67(5), 473 (2017)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    J Q Lü and S D Bilige, Nonlinear Dyn. 90, 2119 (2017)CrossRefGoogle Scholar
  38. 38.
    J Manafian, Comput. Math. Appl. 76, 1246 (2018)MathSciNetCrossRefGoogle Scholar
  39. 39.
    M R Foroutan, J Manafian and A Ranjbaran, Nonlinear Dyn. 92(4), 2077 (2018)CrossRefGoogle Scholar
  40. 40.
    X Zhang and Y Chen, Commun. Nonlinear Sci. Numer. Simulat. 52, 24 (2017)ADSCrossRefGoogle Scholar
  41. 41.
    T Kannaemail, K Sakkaravarthi, M Vijayajayanthi and M Lakshmanan, Pramana – J. Phys. 84, 327 (2015)Google Scholar
  42. 42.
    K Porsezian, Pramana – J. Phys. 48, 143 (1997)Google Scholar
  43. 43.
    Z Du, B Tian, X Y Xie, J Chai and X Y Wu, Pramana – J. Phys. 90: 45 (2018)Google Scholar
  44. 44.
    S Zhang, C Tian and W Y Qian, Pramana – J. Phys. 86, 1259 (2016)ADSGoogle Scholar
  45. 45.
    H Gao, Pramana – J. Phys. 88: 84 (2017)Google Scholar
  46. 46.
    Y Yin, B Tian, H P Chai, Y Q Yuan and Z Du, Pramana – J. Phys. 91: 43 (2018)Google Scholar
  47. 47.
    W Tan, H Dai, Z Dai and W Zhong, Pramana – J. Phys. 89: 77 (2017)Google Scholar
  48. 48.
    Z Du, B Tian, X Y Xie, J Chai and X Y Wu, Pramana – J. Phys. 90: 45 (2018)Google Scholar
  49. 49.
    W Tan, H Dai, Z Dai and W Zhong, Pramana – J. Phys. 89: 77 (2017)Google Scholar
  50. 50.
    K Roy, S K Ghosh and P Chatterjee, Pramana – J. Phys. 86: 873 (2016)ADSCrossRefGoogle Scholar
  51. 51.
    M Lakestani and J Manafian, Pramana – J. Phys. 92: 41 (2019)Google Scholar
  52. 52.
    S H Seyedi, B N Saray and M R H Nobari, Appl. Math. Comput. 269, 488 (2015)MathSciNetGoogle Scholar
  53. 53.
    S H Seyedi, B N Saray and A Ramazani, Powder Technol. 340, 264 (2018)CrossRefGoogle Scholar
  54. 54.
    S Zhang, C Tian and W Y Qian, Pramana – J. Phys. 86, 1259 (2016)ADSGoogle Scholar
  55. 55.
    W X Ma, T Huang and Y Zhang, Phys. Scr. 82, 065003 (2010)ADSCrossRefGoogle Scholar
  56. 56.
    C Gilson, F Lambert, J Nimmo and R Willox, Proc. R. Soc. Lond. A 452, 223 (1996)ADSCrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of ScienceUniversity of MaraghehMaraghehIran
  2. 2.Department of Applied Mathematics, Faculty of Mathematical SciencesUniversity of TabrizTabrizIran

Personalised recommendations