Advertisement

Pramana

, 92:87 | Cite as

Nanocatalytic physicochemical adsorption and degradation of organic dyes

  • C K SumeshEmail author
  • Kinnari Parekh
Article
  • 10 Downloads

Abstract

Physicochemical adsorption and degradation of the azo dye, methylene blue (MB), when irradiated by visible and UV light in aqueous ZnO suspension have been investigated. The novelty of this work is to investigate the effect of dye concentration up to 200 mg / l, keeping the nanocatalysts’ concentration invariant as 1 g / l. The nanocatalysts before and after degradation process have been analysed to understand the mechanism of dye removal using X-ray diffractometer (XRD), Fourier-transform infrared spectroscopy (FTIR) and thermal gravimetric analyser (TGA). The results show that UV light degrades the dye to its intermediates through chemi-adsorption, whereas the visible light induces physisorption of dye molecules on ZnO nanocatalysts. The XRD pattern of the ZnO nanocatalysts revealed no changes in the internal structure of ZnO after the degradation process, confirming the reuse of catalysts.

Keywords

ZnO nanophotocatalysts UV and visible light photodegradation 

PACS Nos

78.40.Fy 81.16.Be 89.60.Ec 

Notes

Acknowledgements

The authors would like to thank the Charotar University of Science & Technology for providing experimental facility.

References

  1. 1.
    K Y Foo, Bioresour. Technol. 104, 679 (2012)CrossRefGoogle Scholar
  2. 2.
    B H Hameed, J. Hazard. Mater. 161, 753 (2009)CrossRefGoogle Scholar
  3. 3.
    M A M Salleh, D K Mahmoud, W A W A Karim and A Idris, Desalination 280, 1 (2011)CrossRefGoogle Scholar
  4. 4.
    S Michela, S Andrea, M Federica, P Antonella, P Luca, A I Epelde, F Elisa and A Angelo, Appl. Catal. B 119–120, 32 (2012)Google Scholar
  5. 5.
    F Jose, H Pilar, M M Carmen, F Pilar and N Simon, Appl. Catal. B 115–116, 31 (2012)Google Scholar
  6. 6.
    M A Rauf and S S Ashraf, Chem. Eng. J. 151, 10 (2009)CrossRefGoogle Scholar
  7. 7.
    M Malligavathy, S Iyyapushpam, S T Nishanthi and D P Padiyan, Pramana – J. Phys. 90: 44 (2018),  https://doi.org/10.1007/s12043-018-1533-1 ADSCrossRefGoogle Scholar
  8. 8.
    C Ma, Z Zhou, H Wei, Z Yang, Z Wang and Y Zhang, Nanoscale Res. Lett. 6, 536 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    R M Mohamed, I A Mkhalid, E S Baeissa and M A Al-Rayyani, J. Nanotechnol. 2012, 329082 (2012)Google Scholar
  10. 10.
    W Dingsheng, X Ting and L Yadong, Nano Res. 2, 30 (2009)CrossRefGoogle Scholar
  11. 11.
    U Hiroyuki, Mater. Lett. 63, 1489 (2009)CrossRefGoogle Scholar
  12. 12.
    S T Tan, B J Chen, X W Sun, W J Fan, H S Kwok, X H Zhang and S J Chua, J. Appl. Phys. 98, 013505 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    R Sreeja, J John, P M Aneesh and M K Jayaraj, Opt. Commun. 283, 2908 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    C Chuncheng, M Wanhong and Z Jincai, Chem. Soc. Rev. 39, 4206 (2010)CrossRefGoogle Scholar
  15. 15.
    N Alexei and K John, J. Photochem. Photobiol. A Chem. 110, 149 (1997)CrossRefGoogle Scholar
  16. 16.
    K K Ioannis and A A Triantafyllos, Appl. Catal. B 49, 1 (2004)CrossRefGoogle Scholar
  17. 17.
    M Muruganandham and M Swaminathan, Sol. Energy Mater. Sol. Cells 81, 439 (2004)CrossRefGoogle Scholar
  18. 18.
    S Baruah, S S Sudarson, G Barnali, K P Samir, A K Raychaudhuri and D Joydeep, J. Appl. Phys. 105, 074308 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    A Akyol, H C Yatmaz and M Bayramoblu, Appl. Catal. B 54, 19 (2004)CrossRefGoogle Scholar
  20. 20.
    W Yizhong, Water Res. 34, 990 (2000)CrossRefGoogle Scholar
  21. 21.
    L Jialian, W Dongfang, Chen Da, G Qisheng, P Guangxing, F Meiqiang, Q Laishun and S Kangying, Environ. Prog. Sustain. Energy 34, 74 (2015)CrossRefGoogle Scholar
  22. 22.
    V Anoop, D Divya, T Amrit and S Jayant, Environ. Prog. Sustain. Energy 34, 380 (2015)CrossRefGoogle Scholar
  23. 23.
    M I Badawy, E M R Souaya, T A Gad-Allah, M S Abdel-Wahed and M Ulbricht, Environ. Prog. Sustain. Energy 33, 886 (2014)Google Scholar
  24. 24.
    C W C Philip and R W Daryl, Environ. Prog. Sustain. Energy 34, 761 (2015)CrossRefGoogle Scholar
  25. 25.
    N M Flores, U Pal, R Galeazzi and A Sandoval, RSC Adv. 4, 41099 (2014)CrossRefGoogle Scholar
  26. 26.
    F Liu, Y H Leung, A B Djurisic, A M Ching Ng and W K Chan, J. Phys. Chem. C 117, 12218 (2013)CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Department of Physical SciencesP D Patel Institute of Applied Sciences, CHARUSATChangaIndia
  2. 2.Dr K C Patel R&D CentreCharotar University of Science and TechnologyChangaIndia

Personalised recommendations