Advertisement

Pramana

, 92:93 | Cite as

Effects of slip on Cu–water or Fe\(_{3}\)O\(_{4}\)–water nanofluid flow over an exponentially stretched sheet

  • Sudipta Ghosh
  • Swati MukhopadhyayEmail author
Article

Abstract

This study aims to report the boundary layer flow of nanofluid over an exponentially stretched sheet in the presence of velocity slip as well as thermal slip. Utilising similarity transformations, the governing momentum and temperature equations are converted into ordinary differential equations and then solved numerically by shooting technique. An interesting behaviour of the solution for the converted self-similar equations is noted: dual solutions are obtained for some particular range of values of the governing parameters for the flow past an extended sheet. A comparison is made between the boundary layer flow of Cu–water and Fe\(_{3}\)O\(_{4}\)–water nanofluids. Both fluid velocity and temperature increase due to the enhancement in the velocity slip parameter. With the rising values of solid volume fraction, velocity diminishes but temperature increases.

Keywords

Nanofluid boundary layer flow exponentially stretching sheet velocity slip thermal slip 

PACS Nos

47.15.C 44.20.+b 

Notes

Acknowledgements

Thanks are indeed due to the reviewers for their constructive suggestions which helped a lot in improving the quality of this paper. S Mukhopadhyay acknowledges financial support received from SERB, New Delhi, India, through Young Scientist Project (YSS / 2014 / 000681).

References

  1. 1.
    E Sanjayanand and S K Khan, Int. J. Therm. Sci. 45, 819 (2006)CrossRefGoogle Scholar
  2. 2.
    D Pal, Appl. Math. Comput. 217(6), 2356 (2010)MathSciNetGoogle Scholar
  3. 3.
    T Hayat, M Sajid and I Pop, Nonlinear Anal.: Real World Appl. 9, 1811 (2008)MathSciNetCrossRefGoogle Scholar
  4. 4.
    T Hayat, M Qasim and Z Abbas, Z. Natforsch. A 65, 231 (2010)ADSGoogle Scholar
  5. 5.
    T Hayat, M Mustafa and S Asghar, Nonlinear Anal.: Real World Appl. 11, 3186 (2010)MathSciNetCrossRefGoogle Scholar
  6. 6.
    T Hayat, Z Iqbal, M Qasim and S Obaidat, Int. J. Heat Mass Transf. 55, 1817 (2012)CrossRefGoogle Scholar
  7. 7.
    T Hayat, M Imtiaz, A Alsaedi and S Almezal, J. Magn. Magn. Mater. 401, 296 (2016)ADSCrossRefGoogle Scholar
  8. 8.
    M Khan, L Ahmad and M Ayaz, Pramana – J. Phys. 91: 13 (2018)ADSCrossRefGoogle Scholar
  9. 9.
    M Khan, M Irfan, W A Khan and M Ayaz, Pramana – J. Phys. 91: 14 (2018)ADSCrossRefGoogle Scholar
  10. 10.
    Z Iqbal, Z Mehmood and B Ahmad, Pramana – J. Phys. 90: 64 (2018)ADSCrossRefGoogle Scholar
  11. 11.
    S T Hussain, S Nadeem and R Ul Haq, Eur. Phys. J. Plus 129, 161 (2014)CrossRefGoogle Scholar
  12. 12.
    S U S Choi, In: The Proceedings of the ASME International Mechanical Engineering Congress and Exposition (San Francisco, USA, 1995) Vol. 66, p. 99Google Scholar
  13. 13.
    J Buongiorno, J. Heat Transf. 128, 240 (2006)CrossRefGoogle Scholar
  14. 14.
    R K Tiwari and M K Das, Int. J. Heat Mass Transf. 50, 2002 (2007)CrossRefGoogle Scholar
  15. 15.
    A Ishak, R Nazar and I Pop, Heat Mass Transf. 44, 921 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    M Mustafa, T Hayat, I Pop, S Asghar and S Obaidat, Int. J. Heat Mass Transf. 54, 5588 (2011)CrossRefGoogle Scholar
  17. 17.
    S Nadeem and C Lee, Nanoscale Resc. Lett. 7(94), 1 (2012)Google Scholar
  18. 18.
    T Hayat, T Abbas, M Ayub, M Farooq and A Alsaedi, J. Mol. Liq. 222, 854 (2016)CrossRefGoogle Scholar
  19. 19.
    A Mushtaq, M Mustafa, T Hayat and A Alsaedi, Adv. Powder Technol. 27, 2223 (2016)CrossRefGoogle Scholar
  20. 20.
    T Hayat, M Waqas, S A Shehzad and A Alsaedi, Pramana – J. Phys. 86(1), 3 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    A A Afify and Md Abd El-Aziz, Pramana – J. Phys. 88: 31 (2017)ADSCrossRefGoogle Scholar
  22. 22.
    A Alsaedi, M I Khan, M Farooq, N Gull and T Hayat, Adv. Powder Technol. 28, 288 (2017)CrossRefGoogle Scholar
  23. 23.
    M Mustafa, J A Khan, T Hayat and A Alsaedi, Int. J. Heat Mass Transf. 108, 1340 (2017)CrossRefGoogle Scholar
  24. 24.
    M Sheikholeslami, T Hayat and A Alsaedi, Int. J. Heat Mass Transf. 108, 1870 (2017)CrossRefGoogle Scholar
  25. 25.
    T Hayat, N Aslam, A Alsaedi and M Rafiq, Int. J. Heat Mass Transf. 115, 1033 (2017)CrossRefGoogle Scholar
  26. 26.
    T Hayat, S Ahmad, M I Khan and A Alsaedi, Physica B 537, 116 (2018)ADSCrossRefGoogle Scholar
  27. 27.
    M Sheikholeslami, T Hayat and A Alsaedi, J. Mol. Liq. 249, 941 (2018)CrossRefGoogle Scholar
  28. 28.
    T Hayat, T Javed and Z Abbas, Int. J. Heat Mass Transf. 51, 4528 (2008)CrossRefGoogle Scholar
  29. 29.
    S Mukhopadhyay, K Bhattacharyya and G C Layek, Int. J. Heat Mass Transf. 54(13–14), 2751 (2011)CrossRefGoogle Scholar
  30. 30.
    M Sajid, Z Abbas, N Ali, T Javed and I Ahmad, Walailak J. Sci. Tech. 11, 1093 (2014)Google Scholar
  31. 31.
    B Mahanthesh, B J Gireesha and R S R Gorla, J. Nigerian Math. Soc. 35, 178 (2016)MathSciNetCrossRefGoogle Scholar
  32. 32.
    E Magyari and B Keller, J. Phys. D 32(5), 577 (1999)ADSCrossRefGoogle Scholar
  33. 33.
    E M A Elbashbeshy, Arch. Mech. 53(6), 643 (2001)Google Scholar
  34. 34.
    B Sahoo and S Poncet, Int. J. Heat Mass Transf. 54, 5010 (2011)CrossRefGoogle Scholar
  35. 35.
    Nadeem, R Ul Haq and Z H Khan, Alexandria Eng. J. 53, 219 (2014)CrossRefGoogle Scholar
  36. 36.
    M Sheikholeslami and D D Ganji, Energy 75, 400 (2014)CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Department of MathematicsThe University of BurdwanBurdwanIndia

Personalised recommendations