Advertisement

Pramana

, 92:84 | Cite as

A novel approach via mixed Crank–Nicolson scheme and differential quadrature method for numerical solutions of solitons of mKdV equation

  • Ali BaşhanEmail author
Article
  • 43 Downloads

Abstract

The purpose of the present study is to obtain numerical solutions of the modified Korteweg–de Vries equation (mKdV) by using mixed Crank–Nicolson scheme and differential quadrature method based on quintic B-spline basis functions. In order to control the effectiveness and accuracy of the present approximation, five well-known test problems, namely, single soliton, interaction of double solitons, interaction of triple solitons, Maxwellian initial condition and tanh initial condition, are used. Furthermore, the error norms \(L_{2}\) and \( L _{\infty }\) are calculated for single soliton solutions to measure the efficiency and the accuracy of the present method. At the same time, the three lowest conservation quantities are calculated and also used to test the efficiency of the method. In addition to these test tools, relative changes of the invariants are calculated and presented. After all these processes, the newly obtained numerical results are compared with results of some of the published articles.

Keywords

Partial differential equations differential quadrature method mKdV equation solitons quintic B-splines 

PACS

02.30.Jr 02.30.Mv 02.60.x 02.60.Cb 

References

  1. 1.
    W X Ma and Y Zhou, J. Diff. Equ. 264, 2633 (2018)ADSCrossRefGoogle Scholar
  2. 2.
    W X Ma, J. Geom. Phys. 133, 10 (2018)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    W X Ma, X Young and H Q Zhang, Comput. Math. Appl. 75, 289 (2018)MathSciNetCrossRefGoogle Scholar
  4. 4.
    J Y Yang, W X Ma and Z Qin, Anal. Math. Phys. 8, 427 (2018)MathSciNetCrossRefGoogle Scholar
  5. 5.
    J Y Yang, W X Ma and Z Qin, East Asia J. Appl. Math. 8, 224 (2018)CrossRefGoogle Scholar
  6. 6.
    R M Miura, SIAM Rev. 18, 412 (1976)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    W Hereman and A Nuseir, Math. Comput. Simul. 43, 13 (1997)CrossRefGoogle Scholar
  8. 8.
    M J Ablowitz and P A Clarkson, Solitons, nonlinear evolution equations and inverse scattering (Cambridge University Press, Cambridge, 1991)CrossRefGoogle Scholar
  9. 9.
    M J Ablowitz and H Segur, Solitons and inverse scattering transform (SIAM, Philadelphia, 1981)CrossRefGoogle Scholar
  10. 10.
    R Bullough and P Caudrey, Solitons: Topics in current physics (Springer, Berlin, 1980) Vol. 17Google Scholar
  11. 11.
    P G Drazin and R S Johnson, Solitons: An introduction (Cambridge University Press, Cambridge, 1996)zbMATHGoogle Scholar
  12. 12.
    R M Miura, J. Math. Phys. 9, 1202 (1968)ADSCrossRefGoogle Scholar
  13. 13.
    T Nagatani, Physica A 264, 581 (1999)ADSCrossRefGoogle Scholar
  14. 14.
    J Zhou, Z K Shi and J L Cao, Physica A 396, 77 (2014)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    C S Gardner, J M Greene, M D Kruskal and M R Miura, Phys. Lett. A 19, 1095 (1967)CrossRefGoogle Scholar
  16. 16.
    C H Su and C S Gardner, J. Math. Phys. 10, 536 (1969)ADSCrossRefGoogle Scholar
  17. 17.
    M Salahuddin, Plasma Phys. Control. Fusion 32, 33 (1990)ADSCrossRefGoogle Scholar
  18. 18.
    W X Ma and Y You, Trans. Am. Math. Soc. 357(5), 1753 (2004)CrossRefGoogle Scholar
  19. 19.
    A Başhan, Turkish J. Math. 42, 373 (2018)MathSciNetCrossRefGoogle Scholar
  20. 20.
    O E Hepson, A Korkmaz and I Dag, Pramana – J. Phys. 91: 59 (2018)ADSCrossRefGoogle Scholar
  21. 21.
    A Başhan, Y Uçar, N M Yağmurlu and A Esen, J. Phys. Conf. Ser. 766, 012028 (2016)CrossRefGoogle Scholar
  22. 22.
    A Wazwaz, Commun. Nonlinear Sci. Numer. Simul. 13, 331 (2008)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    A H Salas, Appl. Math. Comput. 216, 2792 (2010)MathSciNetGoogle Scholar
  24. 24.
    D Kaya, Commun. Nonlinear Sci. Numer. Simul. 10, 693 (2000)ADSCrossRefGoogle Scholar
  25. 25.
    L R T Gardner, G A Gardner and T Geyikli, Comput. Methods Appl. Mech. Eng. 124, 321 (1995)ADSCrossRefGoogle Scholar
  26. 26.
    A Biswas and K R Raslan, Phys. Wave Phenom. 19(2), 142 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    T Ak, S B G Karakoç and A Biswas, Sci. Iran B 24(3), 1148 (2017)Google Scholar
  28. 28.
    T Ak, S B G Karakoç and A Biswas, Iran. J. Sci. Technol. Trans. Sci. 41, 1109 (2017)MathSciNetCrossRefGoogle Scholar
  29. 29.
    T Geyikli, Finite element studies of the modified KdV equation, Doctoral dissertation (University College of North Wales, Bangor, UK, 1994)Google Scholar
  30. 30.
    G A Gardner, A H A Ali and L R T Gardner, Numer. Methods Eng. 1, 590 (1990)Google Scholar
  31. 31.
    R Bellman, B G Kashef and J Casti, J. Comput. Phys. 10, 40 (1972)ADSCrossRefGoogle Scholar
  32. 32.
    R Bellman, B G Kashef, E S Lee and R Vasudevan, Computers and mathematics with applications (Pergamon, Oxford, 1976) Vol. 1, p. 371Google Scholar
  33. 33.
    J Cheng, B Wang and S Du, Int. J. Solids Struct. 42, 6181 (2005)CrossRefGoogle Scholar
  34. 34.
    C Shu and Y L Wu, Int. J. Numer. Methods Fluids 53, 969 (2007)ADSCrossRefGoogle Scholar
  35. 35.
    A G Striz, X Wang and C W Bert, Acta Mech. 111, 85 (1995)CrossRefGoogle Scholar
  36. 36.
    I Bonzani, Comput. Math. Appl. 34, 71 (1997)MathSciNetCrossRefGoogle Scholar
  37. 37.
    A Korkmaz and I Dağ, Int. J. Comput.-Aided Eng. Softw. 28(6), 654 (2011)CrossRefGoogle Scholar
  38. 38.
    A Başhan, S B G Karakoç and T Geyikli, Kuwait J. Sci. 42(2), 67 (2015)MathSciNetGoogle Scholar
  39. 39.
    A Başhan, Y Uçar, N M Yağmurlu and A Esen, Eur. Phys. J. Plus 133, 12 (2018)CrossRefGoogle Scholar
  40. 40.
    S B G Karakoç, A Başhan and T Geyikli, Sci. World J. 2014, 1 (2014)CrossRefGoogle Scholar
  41. 41.
    R C Mittal and R K Jain, Appl. Math. Comput. 218, 7839 (2012)MathSciNetGoogle Scholar
  42. 42.
    A Başhan, N M Yağmurlu, Y Uçar and A Esen, Chaos Solitons Fractals 100, 45 (2017)ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    A Başhan, N M Yağmurlu, Y Uçar and A Esen, Int. J. Mod. Phys. C 29(6), 1850043 (2018)ADSCrossRefGoogle Scholar
  44. 44.
    P M Prenter, Splines and variational methods (John Wiley, New York, 1975)zbMATHGoogle Scholar
  45. 45.
    S G Rubin and R A Graves, A cubic spline approximation for problems in fluid mechanics, Technical Report (National Aeronautics and Space Administration, Washington, 1975)Google Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Department of Mathematics, Science and Art FacultyZonguldak Bulent Ecevit UniversityZonguldakTurkey

Personalised recommendations