, 93:1 | Cite as

Adaptive synchronisation of complex networks with non-dissipatively coupled and uncertain inner coupling matrix

  • Shuguo WangEmail author


In this paper, the adaptive synchronisation of time-varying perturbed complex networks with non-dissipatively coupled and uncertain inner coupling matrix is studied. In order to describe the actual network better, the out-coupling configuration matrix is not limited by the dissipatively coupled conditions. It is also worth pointing out that the drive system and the response system described in this paper are uncertain, and uncertainty arises in linear inner coupling matrix and unavoidable uncertain external disturbances, which is different from the past. On the basis of Lyapunov stability theory, adaptive law can be obtained and at the same time unknown bounded disturbances can be overcome.


Synchronisation time-varying delays non-dissipatively coupled uncertain complex 


05.45.Xt 05.45.Gg 05.45.Pq 



This research was partially supported by the Fundamental Research Funds for the Central Universities, China (No. 2017B17914) and the National Nature Science Foundation of China (Grant No. 11402226).


  1. 1.
    L M Pecora and T L Carroll, Phys. Rev. Lett. 80, 2109 (1998)ADSCrossRefGoogle Scholar
  2. 2.
    A Selivanov, A Fradkov and E Fridman, J. Franklin Inst. 352, 52 (2015)MathSciNetCrossRefGoogle Scholar
  3. 3.
    R Rakkiyappan and N Sakthivel, Neurocomputing 162, 26 (2015)CrossRefGoogle Scholar
  4. 4.
    G Y Zhou, C R Li, T T Li, Y Yang, C Wang, F J He and J C Sun, Physica A 457, 506 (2016)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    L M Wang, Pramana – J. Phys. 89: 38 (2017)ADSCrossRefGoogle Scholar
  6. 6.
    S Rajavel, R Samidurai, J D Cao, A Alsaedi and B Ahmad, Appl. Math. Comput. 297, 145 (2017)MathSciNetGoogle Scholar
  7. 7.
    F Z Nian and W L Liu, Pramana – J. Phys. 86, 1209 (2016)ADSCrossRefGoogle Scholar
  8. 8.
    C D Huang, J D Cao, M Xiao, A Alsaedi and T Hayat, Appl. Math. Comput. 292, 210 (2017)MathSciNetGoogle Scholar
  9. 9.
    H Tirandza, Pramana – J. Phys. 89: 85 (2017)ADSCrossRefGoogle Scholar
  10. 10.
    X Y Chen, J D Cao, J L Qiu, A Alsaedi and F E Alsaadi, Adv. Differ. Equ. 2016, 231 (2016)Google Scholar
  11. 11.
    K Sivaranjani, R Rakkiyappan, J D Cao and A Alsaedi, Appl. Math. Comput. 311, 283 (2017)MathSciNetGoogle Scholar
  12. 12.
    W W Zhang, R C Wu, J D Cao, A Alsaedi and T Hayat, Nonlinear Anal.: Model. Control 22, 636 (2017)Google Scholar
  13. 13.
    G L Cai, S Q Jiang, S M Cai and L X Tian, Pramana – J. Phys. 86, 545 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    S Q Jiang and X B Lu, Pramana – J. Phys. 86, 1243 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    X Q Lei, S M Cai, S Q Jiang and Z R Liu, Neurocomputing 222, 26 (2017)CrossRefGoogle Scholar
  16. 16.
    S Zheng, J. Franklin Inst. 354, 6341 (2017)MathSciNetCrossRefGoogle Scholar
  17. 17.
    L Shi, H Zhu, S M Zhong, K B Shi and J Cheng, ISA Trans. 65, 81 (2016)CrossRefGoogle Scholar
  18. 18.
    S G Wang, S Zheng, B W Zhang and H T Cao, Optik 127, 4716 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    C R Li, L Lü, Y M Yang, S Zhou and Y X Hong, Physica A 492, 2301 (2018)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    L Shi, H L Yang, X Wang, S M Zhong and W Q Wang, Chaos Solitons Fractals  111, 180 (2018)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    X Wang, X Z Liu, K She and S M Zhong, J. Franklin Inst. 354, 4913 (2017)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Z Y Wu and H Leng, J. Franklin Inst. 354, 689 (2017)MathSciNetCrossRefGoogle Scholar
  23. 23.
    X Wang, X Z Liu, K She and S M Zhong, Nonlinear Anal.: Hybrid Syst. 26, 307 (2017)Google Scholar
  24. 24.
    X H Ma and J A Wang, Neurocomputing 199, 197 (2016)CrossRefGoogle Scholar
  25. 25.
    Y F Lei, L L Zhang, Y H Wang and Y Q Fan, Neurocomputing 230, 390 (2017)CrossRefGoogle Scholar
  26. 26.
    L L Zhang, Y F Lei, Y H Wang and H G Chen, Appl. Math. Model. 55, 248 (2018)MathSciNetCrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Department of Mathematics and Physics, Changzhou CampusHohai UniversityChangzhouPeople’s Republic of China

Personalised recommendations