, 92:85 | Cite as

Laser-induced modulation of optical band-gap parameters in the III–V-type semiconductors from the density-of-state (DOS) calculations

  • P K Chakraborty
  • B N Mondal
  • B K ChaudhuriEmail author


Optical band gap (\(E_{\mathrm{g}0} \)) is a parameter of paramount importance in describing various transport and opto-electronic properties of the III–V-type low band-gap semiconductors. In the present communication, an attempt has been made to develop an energy–momentum (\(E{-}{\bar{k}} \)) dispersion relation for studying the density-of-state (DOS) and band-gap-related parameters. The external laser excitation has been treated as a perturbation. It has been shown theoretically that due to such excitation with different intensity (I) and wavelength \((\lambda )\), the band edge of the conduction band (CB) of the III–V compound semiconductors moves vertically upward, indicating laser modulation (increase) of \(E_{\mathrm {g}0} \) and related parameters compared to those of the normal ones (unperturbed). Therefore, in the presence of light, the original CB edge forms a pseudo-CB edge above the unperturbed CB edge in the forbidden band (FB) zone. This new development of the (\(E{-}{\bar{k}} \)) relationship has also been extended for the estimation of exact optical effective mass (OPEM) of an electron in some III–V compound semiconductors. The OPEM variation with carrier concentration showed a continuous decreasing nature, while the corresponding variation of electron effective mass (EEM) (without laser excitation) exhibited an increasing trend. The present theoretical results would be important for the deeper understanding of the variation of OPEM with I and \(\lambda \). The observed new results will also be beneficial for studying laser-induced effects in semiconductor heterostructures with different applications in optoelectronic devices.


Density of state III–V compound semiconductor optical band gap parabolic band optoelectronics laser optics 


42.40.Nn 42.55.Px 42.70.−a 71.15.Mb 



The authors are grateful to the Indian Association for the Cultivation of Science, Jadavpur, Kolkata for providing library and computer facilities to complete the work. One of the authors (BKC) is also grateful to Prof. S C Sarkar, CRCT, Jadavpur University, Kolkata, for providing facilities for performing the work.


  1. 1.
    D M Arabi and S Nasser, Pramana – J. Phys. 86, 637 (2016)CrossRefGoogle Scholar
  2. 2.
    G Gulyamov and A G Gulyamov, Semiconductors 49, 819 (2015)ADSCrossRefGoogle Scholar
  3. 3.
    G Gulyamov, U I Erkaboev and A G Gulyamov, Condens. Matter. Phys. (Hindawi), 2017, 1,
  4. 4.
    H Y Fan, Phys. Rev. 82, 900 (1951)ADSCrossRefGoogle Scholar
  5. 5.
    P K Chakraborty and B N Mondal, Indian J. Phys. 92, 303 (2018)ADSCrossRefGoogle Scholar
  6. 6.
    R Hill and G D Pitt, Solid State Commun. 17, 739 (1975)ADSCrossRefGoogle Scholar
  7. 7.
    R R Koropecki and J A Schmidt, J. Appl. Phys. 91, 8965 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    N Sangiorgi, L Aversa, R Tatti, R Verucchi and A Sanson, Opt. Mater. 64, 18 (2017)ADSCrossRefGoogle Scholar
  9. 9.
    P K Chakraborty, S Choudhury and K P Ghatak, Physica B 387, 333 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    B R Nag, Electron transport in compound semiconductors (Springer, Berlin, 1980) Vol. 11, p. 303Google Scholar
  11. 11.
    Z Zhang, L Qian, D Fan and X Deng, Appl. Phys. Lett. 60, 19 (1992)Google Scholar
  12. 12.
    B K Chaudhuri, B N Mondal and P K Chakraborty, Pramana – J. Phys. 90: 18 (2018)ADSCrossRefGoogle Scholar
  13. 13.
    N V Pavlov and G G Zegrya, Semiconductors 49, 604 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    H S Brandi, A Latge and L E Oliveira, Solid State Commun. 117, 83 (2001)ADSCrossRefGoogle Scholar
  15. 15.
    H S Brandi, A Latge and L E Oliveira, Solid State Commun. 107, 32 (1998)ADSCrossRefGoogle Scholar
  16. 16.
    K P Ghatak and S Bhattacharya, in: Heavy-doped 2D-quantizied structures and the Einstein relation, Springer reacts in modern physics (Springer International Publishing, Switzerland, 2015) Vol. 260, Chapter 10, p. 303, Online ISBN: 978-3-319-08380-3, Series Online ISSN: 1615.0430Google Scholar
  17. 17.
    D M Esterling, Solid State Commun. 15, 351 (1975)ADSCrossRefGoogle Scholar
  18. 18.
    H X Tang, F G Monzon, R Lifshitz, M C Cross and M L Roukes, Phys. Rev. B 61, 4437 (2000)ADSCrossRefGoogle Scholar
  19. 19.
    V Virkkala, V Havu, F Tuomisto and M J Puska, Phys. Rev. B 88, 035204 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    Y Zhang, A Mascarenhas and L W Wang, Phys. Rev. B 71, 155201 (2005)ADSCrossRefGoogle Scholar
  21. 21.
    V Virkkala, V Havu, F Tuomisto and M J Puska, Phys. Rev. B 88, 235201 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    W Zawadzki, Handbook of semiconductor physics (North Holland, Amsterdam, 1982) Vol. 1, p. 719Google Scholar
  23. 23.
    L I Schiff, Quantum mechanics (McGraw Hill, London, 1968)Google Scholar
  24. 24.
    E Gojaev, U Abdurahmanova, Z Dzhakhangirli and S Mehdieva, Open J. Inorg. Non-Metallic Mater. 4, 13 (2014)CrossRefGoogle Scholar
  25. 25.
    Z G Yu, Sci. Rep. 6, 1 (2016)CrossRefGoogle Scholar
  26. 26.
    J Callaway, Energy band theory (Academic Press, New York, 1964) Vol. 284, p. 284zbMATHGoogle Scholar
  27. 27.
    P Dzwig, V Crum, M G Burt and J C Inkson, Solid State Commun. 39, 407 (1981)ADSCrossRefGoogle Scholar
  28. 28.
    P K Chakraborty, L J Singh and K P Ghatak, J. Appl. Phys. 95, 5311 (2004)ADSCrossRefGoogle Scholar
  29. 29.
    B R Nag, Physics of quantum well devices (Kluwer Academic Publishers, London, 2000) Vol. 107Google Scholar
  30. 30.
    Y Zhang, A Mascarenhas, J F Geisz, H P Xin and C W Tu, Phys. Rev. B 63, 085205 (2001)ADSCrossRefGoogle Scholar
  31. 31.
    D Veal, L F J Piper, S Jollands, B R Bennett, P H Jefferson, P A Thomas, C F McConville, B N Murdin, L Buckle, G W Smith and T Ashley, Appl. Phys. Lett. 87, 132101 (2005)ADSCrossRefGoogle Scholar
  32. 32.
    J N Hodgson, J. Phys. Chem. Solids 24, 1213 (1963)ADSCrossRefGoogle Scholar
  33. 33.
    R K Willardson and A C Beer eds, Semiconductors and semimetals (Academic Press, New York, 1966) Vol. 102Google Scholar
  34. 34.
    H Miyazawa and H Ikoma, Solid State Commun. 5, 229 (1967)ADSCrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Department of Electronics and Electrical Communication EngineeringIndian Institute of Technology KharagpurKharagpurIndia
  2. 2.Department of Central Scientific ServicesIndian Association for the Cultivation of ScienceJadavpur, KolkataIndia
  3. 3.Centre for Rural & Cryogenic TechnologiesJadavpur UniversityKolkataIndia

Personalised recommendations