Advertisement

Pramana

, 92:90 | Cite as

Electro-osmotic flow and heat transfer of a non-Newtonian nanofluid under the influence of peristalsis

  • Galal M Moatimid
  • Mona A A MohamedEmail author
  • Mohamed A Hassan
  • Engy M M El-Dakdoky
Article
  • 19 Downloads

Abstract

This paper investigates the electro-osmotic flow of non-Newtonian nanofluid through a peristaltic microchannel by considering the influence of electro-osmotic phenomenon. The effects of the Brownian and thermophoresis parameters are taken into account. The problem is modulated and its governing equations are solved analytically by assuming long wavelength and low Reynolds number. The distributions of the axial velocity, temperature, nanoparticles volume fraction and volumetric flow rate are achieved and plotted under the influence of various parameters. In addition, the expressions for the skin friction, Nusselt number and Sherwood number are obtained and illustrated through a set of graphs. Furthermore, the trapping phenomenon is examined with the Rayleigh, Brownian and thermophoresis parameters. The present results are useful in medical and biological applications, especially in cancer therapy, which involves suspended nanoparticles of gold in blood (nanofluid) passing through a peristaltic tube (artery).

Keywords

Nanofluid peristaltic motion electro-osmosis heat transfer 

PACS No

47 

References

  1. 1.
    P Keblinski, J A Eastman and D G Cahill, Mater. Today 8(6), 36 (2005)CrossRefGoogle Scholar
  2. 2.
    S U S Choi and J A Eastman, ASME Int. Mech. Eng. Congress Expo 231(66), 99 (1995)Google Scholar
  3. 3.
    H Masuda, A Ebata, K Teramae and N Hishinuma, Netsu Bussei 7(4), 227 (1993)CrossRefGoogle Scholar
  4. 4.
    R Irwansyah, C Cierpka and C J Kahler, J. Phys.: Conf. Ser. 745, 032078 (2016)Google Scholar
  5. 5.
    S Choi, Z G Zhang, F E Lockwood, W Yu and E A Grulke, Appl. Phys. Lett. 79(14), 2252 (2001)ADSCrossRefGoogle Scholar
  6. 6.
    J A Eastman, S Choi, S Yu, W Li and L J Thompson, Appl. Phys. Lett. 78(6), 718 (2001)ADSCrossRefGoogle Scholar
  7. 7.
    J Buongiorno and W Hu, Proceedings of ICAPP’05, Seoul, 15–19 May, 2005Google Scholar
  8. 8.
    J Buongiorno, ASME J. Heat Transfer 128(3), 240 (2006)CrossRefGoogle Scholar
  9. 9.
    C J Choi, S P Jang and S Choi, J. Colloid Interface Sci. 363(1), 59 (2011)Google Scholar
  10. 10.
    K Nowar, Math Problems in Eng.,  https://doi.org/10.1155/2014/389581
  11. 11.
    Y C Fung and C S Yih, J. Appl. Mech. 35, 669 (1968)ADSCrossRefGoogle Scholar
  12. 12.
    D Srinivasacharya, G Radhakrishnamachary and C H Srinivasulu, Turk. J. Eng. Env. Sci. 32, 357 (2008)Google Scholar
  13. 13.
    A H Shapiro, M Y Jaffrin and S L Weinberg, J. Fluid Mech. 37(4), 799 (1969)ADSCrossRefGoogle Scholar
  14. 14.
    Proceedings of Peristaltic Pumps – Advantages and Applications, Manufacturing chemist pharma, https://www.manufacturingchemist.com/news/article_page/Peristaltic_pumps_advantages_and_applications/74693 (accessed 17-Jan-2012)
  15. 15.
    D Tripathi, S Bhushan and O A Bég, J. Mech. Med. Biol. 17(5), 1750052 (2017)CrossRefGoogle Scholar
  16. 16.
    D Tripathi, S Bhushan and O A Bég, Alex. Eng. J.,  https://doi.org/10.1016/j.aej.2017.05.027 (2017)
  17. 17.
    D Tripathi, A Sharma, O A Beg and A Tiwari, J. Therm. Sci. Eng. Appl. 9, 1 (2017)CrossRefGoogle Scholar
  18. 18.
    D Tripathi, A Sharma and O A Bég, Adv. Powder Technol. 29(3), 639 (2018)CrossRefGoogle Scholar
  19. 19.
    N S Akbar, A W Butt, D Tripathi and O A Bég, Pramana – J. Phys. 88: 52 (2017),  https://doi.org/10.1007/s12043-016-1354-z
  20. 20.
    M K Chaube, A Yadav and D Tripathi, J. Braz. Soc. Mech. Sci. Eng. 40(423), 1 (2018)Google Scholar
  21. 21.
    M K Chaube, A Yadav, D Tripathi and O A Bég, Korea-Aust. Rheol. J. 30(2), 89 (2018)CrossRefGoogle Scholar
  22. 22.
    M K Chaube, A Yadav, D Tripathi and O A Bég, Microvasc. Res. 118, 162 (2018)CrossRefGoogle Scholar
  23. 23.
    D Tripathi, R Jhorar, O A Beǵ and S Shaw, Meccanica 53(8), 2079 (2017)CrossRefGoogle Scholar
  24. 24.
    D Tripathi, A Yadav, O A Bég and R Kumar, Microvasc. Res. 117, 28 (2018)CrossRefGoogle Scholar
  25. 25.
    J Prakash and D Tripathi, J. Mol. Liq. 256, 352 (2018)CrossRefGoogle Scholar
  26. 26.
    M Nakamura and T Sawada, J. Biomech. 110, 137 (1988)CrossRefGoogle Scholar
  27. 27.
    A V Kuznetsov and D A Nield, Int. J. Therm. Sci. 49, 243 (2010)CrossRefGoogle Scholar
  28. 28.
    G R Machireddy and V R Kattamreddy, J. Nigerian Math. Soc. 35, 227 (2016)MathSciNetCrossRefGoogle Scholar
  29. 29.
    KhS Mekheimer, W M Hasona, R E Abo-Elkhair and A Z Zaher, Phys. Lett. A 382, 85 (2018)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    Italian National Research Council, Dielectric Properties of Body Tissues, from http://niremf.ifac.cnr.it/tissprop/htmlclie/htmlclie.php (2018)
  31. 31.
    P B Johnson and R W Christy, Phys. Rev. B 6, 4370 (1972)ADSCrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  • Galal M Moatimid
    • 1
  • Mona A A Mohamed
    • 1
    Email author
  • Mohamed A Hassan
    • 1
  • Engy M M El-Dakdoky
    • 1
  1. 1.Department of Mathematics, Faculty of EducationAin Shams UniversityRoxy, CairoEgypt

Personalised recommendations