Advertisement

Pramana

, 92:36 | Cite as

Complexiton solutions and soliton solutions: \((2+1)\)-dimensional Date–Jimbo–Kashiwara–Miwa equation

  • Abdullahi Rashid Adem
  • Yakup Yildirim
  • Emrullah YaşarEmail author
Article
  • 19 Downloads

Abstract

In this work, we derive the complexiton solutions for Date–Jimbo–Kashiwara–Miwa (DJKM) equation using the extended transformed rational function algorithm that relies on the Hirota bilinear form of the considered equation. Additional solutions such as complex-valued solutions also fall out of this integration scheme. Multisoliton-type solutions, in other words one-soliton, two-soliton and three-soliton solutions, which comprise both wave frequencies and generic phase shifts are presented through the medium of the multiple exp-function methodology which falls out as a result of generalisation of Hirota’s perturbation technique.

Keywords

Date–Jimbo–Kashiwara–Miwa equation soliton solutions multiple exp-function method complexiton solutions extended transformed rational function method 

PACS Nos

02.30.Gp 02.30.Jr 02.30.Ik 

References

  1. 1.
    R Hirota, The direct method in soliton theory (Cambridge University Press, 2004) Vol. 155Google Scholar
  2. 2.
    W X Ma, T W Huang and Y Zhang, Phys. Scr. 82, 065003 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    W X Ma and Z N Zhu, Appl. Math. Comput. 218, 11871 (2012)MathSciNetGoogle Scholar
  4. 4.
    A R Adem, Comput. Math. Appl. 71, 1248 (2016)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Y Yıldırım and E Yaşar, Chin. Phys. B 26(7), 070201 (2017)ADSCrossRefGoogle Scholar
  6. 6.
    Y Yildirim, E Yasar and A R Adem, Nonlinear Dyn. 89(3), 2291 (2017)CrossRefGoogle Scholar
  7. 7.
    J H He and H X Wu, Chaos Solitons Fractals 30, 700 (2006)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    H Q Zhang and W X Ma, Appl. Math. Comput. 230, 509 (2014)MathSciNetGoogle Scholar
  9. 9.
    E Yaşar, Y Yıldırım and C M Khalique, Results Phys. 6, 322 (2016)ADSCrossRefGoogle Scholar
  10. 10.
    M Mirzazadeh, Y Yıldırım, E Yaşar, H Triki, Q Zhou, S P Moshokoa, M Z Ullah, A R Seadawy, A Biswas and M Belic, Opt.-Int. J. Light Electron Opt. 154, 551 (2018)Google Scholar
  11. 11.
    Y Yıldırım and E Yaşar, Nonlinear Dyn. 90(3), 1571 (2017)CrossRefGoogle Scholar
  12. 12.
    Y Yıldırım and E Yaşar, Chaos Solitons Fractals 107, 146 (2018)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    A R Adem and C M Khalique, Comput. Fluids 81, 10 (2013)MathSciNetCrossRefGoogle Scholar
  14. 14.
    A R Adem and C M Khalique, Appl. Math. Comput. 219(3), 959 (2012)MathSciNetGoogle Scholar
  15. 15.
    A R Adem and B Muatjetjeja, Appl. Math. Lett. 48, 109 (2015)MathSciNetCrossRefGoogle Scholar
  16. 16.
    X B Hu and Y Li, Acta Math. Sci. 11, 164 (1991) (in Chinese)CrossRefGoogle Scholar
  17. 17.
    Y H Wang, H Wang and C Temuer, Nonlinear Dyn. 78, 1101 (2014)CrossRefGoogle Scholar
  18. 18.
    Y Q Yuan, B Tian, W R Sun, J Chai and L Liu, Comput. Math. Appl. 74(4), 873 (2017)MathSciNetGoogle Scholar
  19. 19.
    W X Ma and Y Zhou, J. Diff. Eqns 264(4), 2633 (2018)CrossRefGoogle Scholar
  20. 20.
    S T Chen and W X Ma, Front. Math. China 13(3), 525 (2018)MathSciNetCrossRefGoogle Scholar
  21. 21.
    J B Zhang and W X Ma, Comput. Math. Appl. 74(3), 591 (2017)MathSciNetCrossRefGoogle Scholar
  22. 22.
    H Q Zhao and W X Ma, Comput. Math. Appl. 74(6), 1399 (2017)MathSciNetCrossRefGoogle Scholar
  23. 23.
    W X Ma, X Yong and H Q Zhang, Comput. Math. Appl. 75(1), 289 (2018)MathSciNetCrossRefGoogle Scholar
  24. 24.
    J Y Yang, W X Ma and Z Qin, Anal. Math. Phys. 8(3), 427 (2018)MathSciNetCrossRefGoogle Scholar
  25. 25.
    P Casati, G Falqui, F Magri and M Pedroni, The KP theory revisited. IV. KP equations, dual KP equations, Baker–Akhiezer and \(\tau \)-functions, preprint SISSA/5/96/FM, Trieste, Italy (1996)Google Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  • Abdullahi Rashid Adem
    • 1
  • Yakup Yildirim
    • 2
  • Emrullah Yaşar
    • 2
    Email author
  1. 1.Material Science Innovation and Modelling Focus Area, Department of Mathematical SciencesNorth-West University, Mafikeng CampusMmabatho South Africa
  2. 2.Department of Mathematics, Faculty of Arts and SciencesUludag UniversityBursaTurkey

Personalised recommendations