Advertisement

Pramana

, 92:41 | Cite as

Lump-type solutions and interaction phenomenon to the bidirectional Sawada–Kotera equation

  • Jalil ManafianEmail author
  • Mehrdad Lakestani
Article
  • 20 Downloads

Abstract

In this paper, we use the Hirota bilinear method. With the help of symbolic calculation and applying this method, we solve the \((2+1)\)-dimensional bidirectional Sawada–Kotera (bSK) equation to obtain some new lump-kink, lump-solitons, periodic kink-wave, periodic soliton and periodic wave solutions.

Keywords

Bidirectional Sawada–Kotera equation Hirota bilinear method symbolic calculation lump-kink lump-solitons periodic kink-wave periodic soliton and periodic wave solutions 

PACS Nos

02.60.Lj 02.70.Wz 02.90.+p 04.30.Nk 

Notes

Acknowledgements

The authors would like to thank the research support provided by the Iran National Science Foundation and the support of the University of Tabriz under Grant Number 95007368.

References

  1. 1.
    S L Jia, Y T Gao, C C Ding and G F Deng, Appl. Math. Lett. 74, 193 (2017)MathSciNetCrossRefGoogle Scholar
  2. 2.
    B G Konopelcheno and V G Dubrovsky, Phys. Lett. A 102, 15 (1984)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    K Sawada and T Kotera, Prog. Theor. Phys. 51, 1355 (1974)ADSCrossRefGoogle Scholar
  4. 4.
    U Göktas and W Hereman, J. Symbolic Comput. 11, 1 (2008)Google Scholar
  5. 5.
    A M Wazwaz, Appl. Math. Comput. 184, 1002 (2007)MathSciNetGoogle Scholar
  6. 6.
    M Y Ali, M G Hafez, M K H Chowdury and M T Akter, J. Appl. Math. Phys. 4, 262 (2016)CrossRefGoogle Scholar
  7. 7.
    A Salas, Appl. Math. Comput. 196, 812 (2008)MathSciNetGoogle Scholar
  8. 8.
    C A Gómez and A H Salas, Appl. Math. Comput. 217, 1408 (2010)MathSciNetGoogle Scholar
  9. 9.
    W R Shan, T Z Yan, X Lu, M Li and B Tian, Commun. Nonlinear Sci. Numer. Simul. 18, 1568 (2013)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    C Rogers, W K Schief and M P Stallybrass, Int. J. Non-Linear Mech. 30, 223 (1995)CrossRefGoogle Scholar
  11. 11.
    V G Dubrovsky and Y V Lisitsyn, Phys. Lett. A 295, 198 (2002)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    X Lü, T Geng, C Zhang, H W Zhu, X H Meng and B Tian, J. Mod. Phys. B 23, 5003 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    X Lü, B Tian, K Sun and P Wang, J. Math. Phys. 51, 113506 (2010)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    A M Wazwaz, Math. Method Appl. Sci. 34, 1580 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    L L Huang and Y Chen, Commun. Theor. Phys. 67, 473 (2017)ADSCrossRefGoogle Scholar
  16. 16.
    A R Adem and X Lü, Nonlinear Dyn. 84, 915 (2016)CrossRefGoogle Scholar
  17. 17.
    D W Zuo, H X Mo and H P Zhou, Z. Naturforsch. A 71, 305 (2016)Google Scholar
  18. 18.
    J Lv and S Bilige, Nonlinear Dyn. 90, 2119 (2017)CrossRefGoogle Scholar
  19. 19.
    J M Dye and A Parker, J. Math. Phys. 43, 4921 (2002)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Y L Ma and X G Geng, Appl. Math. Comput. 218, 6963 (2012)MathSciNetGoogle Scholar
  21. 21.
    X J Lai and X O Cai, Z. Naturforsch. A 65, 658 (2010)Google Scholar
  22. 22.
    W X Ma, Phys. Lett. A 379, 1975 (2015)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    S V Manakov, V E Zakharov, L A Bordag and V B Matveev, Phys. Lett. A 63, 205 (1977)ADSCrossRefGoogle Scholar
  24. 24.
    H Q Zhao and W X Ma, Comput. Math. Appl. 74(6), 1399 (2017)MathSciNetCrossRefGoogle Scholar
  25. 25.
    J Y Yang and W X Ma, Int. J. Mod. Phys. B 30, 1640028 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    D H Peregrine, J. Aust. Math. Soc. Ser. B Appl. Math. 25, 16 (1983)CrossRefGoogle Scholar
  27. 27.
    W X Ma, Z Y Qin and X Lv, Nonlinear Dyn. 84, 923 (2016)CrossRefGoogle Scholar
  28. 28.
    C J Wang, Nonlinear Dyn. 84, 697 (2016)CrossRefGoogle Scholar
  29. 29.
    C J Wang, Z D Dai and C F Liu, Mediterr. J. Math. 13, 1087 (2016)MathSciNetCrossRefGoogle Scholar
  30. 30.
    J Lü, S Bilige and T Chaolu, Nonlinear Dyn. 91, 1669 (2018)CrossRefGoogle Scholar
  31. 31.
    Y Zhang et al, Comput. Math. Appl. 73, 246 (2017)MathSciNetCrossRefGoogle Scholar
  32. 32.
    X Zhang and Y Chen, Commun. Nonlinear Sci. Numer. Simul. 52, 24 (2017)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    M R Foroutan, J Manafian and A Ranjbaran, Nonlinear Dyn. 92, 2077 (2018)CrossRefGoogle Scholar
  34. 34.
    W X Ma and Y Zhou, J. Differ. Equ. 264, 2633 (2018)ADSCrossRefGoogle Scholar
  35. 35.
    S T Chen and W X Ma, Front. Math. China 13, 525 (2018)MathSciNetCrossRefGoogle Scholar
  36. 36.
    J B Zhang and W X Ma, Anal. Math. Phys. 74, 591 (2017)Google Scholar
  37. 37.
    J Y Yang, W X Ma and Z Y Qin, Anal. Math. Phys. 8, 427 (2018)MathSciNetCrossRefGoogle Scholar
  38. 38.
    W X Ma, X L Yong and H Q Zhang, Comput. Math. Appl. 75, 289 (2018)MathSciNetCrossRefGoogle Scholar
  39. 39.
    W X Ma, Integrability, in: Encyclopedia of nonlinear science edited by A Scott (Taylor & Francis, New York, 2005), pp. 250–253Google Scholar
  40. 40.
    B Sun and Z Lian, Pramana – J. Phys. 90: 23 (2018)ADSCrossRefGoogle Scholar
  41. 41.
    G Mu, Z Dai and Z Zhao, Pramana – J. Phys. 81, 367 (2013)ADSCrossRefGoogle Scholar
  42. 42.
    Z Du, B Tian, X Y Xie, J Chai and X Y Wu, Pramana – J. Phys. 90: 45 (2018)ADSCrossRefGoogle Scholar
  43. 43.
    W Tan, H Dai, Z Dai and W Zhong, Pramana – J. Phys. 89: 77 (2017)ADSCrossRefGoogle Scholar
  44. 44.
    K Roy, S K Ghosh and P Chatterjee, Pramana – J. Phys. 86, 873 (2016)ADSCrossRefGoogle Scholar
  45. 45.
    S Zhang, C Tian and W Y Qian, Pramana – J. Phys. 86, 1259 (2016)ADSCrossRefGoogle Scholar
  46. 46.
    S H Seyedi, B N Saray and A Ramazani, Powder Technol.  340, 264 (2018)CrossRefGoogle Scholar
  47. 47.
    S H Seyedi, B N Saray and M R H Nobari, Appl. Math. Comput. 269, 488 (2015)MathSciNetGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Department of Applied Mathematics, Faculty of Mathematical SciencesUniversity of TabrizTabrizIran

Personalised recommendations