Advertisement

Pramana

, 92:45 | Cite as

Mayer’s convergence and thermodynamics of ideal Bose gas

  • T P Suresh
  • K M UdayanandanEmail author
  • Vishnu Mayya Bannur
Article
  • 1 Downloads

Abstract

The equation of state for a collection of ideal bosons in both the low-density and high-density regions is found using the method of cluster expansion with a new generating function. The importance of the radius of convergence in the cluster expansion and its connection to the Bose–Einstein condensation phenomenon are studied. The radius of convergence of the partition function is calculated and the values of critical density, fugacity and other thermodynamic properties at condensation are obtained using Mayer’s convergence method.

Keywords

Cluster expansion equation of state Bose–Einstein condensation radius of convergence 

PACS Nos

05.20.y 05.70.Ce 05.70.–a 05.70.Fh 

Notes

Acknowledgements

T P Suresh wishes to acknowledge the University Grants Commission for the assistance given under the Faculty Development Programme.

References

  1. 1.
    S N Bose, Z. Phys. 26, 178 (1924)ADSCrossRefGoogle Scholar
  2. 2.
    A Einstein, Sitzber. Kgl. Preuss. Akad. Wiss. 1, 3 (1925)Google Scholar
  3. 3.
    B Widom, Phys. Rev. 96, 16 (1954)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    W H J Fuchs, J. Rational Mech. Anal. 4, 647 (1955)MathSciNetGoogle Scholar
  5. 5.
    C N Yang and T D Lee, Phys. Rev. 117, 4 (1960)Google Scholar
  6. 6.
    O Jenssen and P C Hemmer, Phys. Lett. A 35, 149 (1971)ADSCrossRefGoogle Scholar
  7. 7.
    R M Ziff and J M Kincaid, J. Math. Phys. 21, 161 (1980)ADSCrossRefGoogle Scholar
  8. 8.
    J E Mayer and M Goeppert Mayer, Statistical mechanics (Wiley, New York, 1946) pp. 277–294Google Scholar
  9. 9.
    M V Ushcats, Phys. Rev. Lett. 109, 040601 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    M V Ushcats, Phys. Rev. E 87, 042111 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    V M Bannur, Physica A 419, 675 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    K Huang, Statistical mechanics, 2nd Edn (John Wiley and Sons, New York, 1987) pp. 278–293Google Scholar
  13. 13.
    R K Pathria and P D Beale, Statistical mechanics, 3rd Edn (Elsevier, Butterworth, 2011) pp. 232–259zbMATHGoogle Scholar
  14. 14.
    A Isihara, Prog. Theor. Phys. Suppl. 44 (1969)Google Scholar
  15. 15.
    M V Ushcats, L A Bulavin, V M Sysoev and S Yu Ushcats, Ukrain. J. Phys. 62, 533 (2017)Google Scholar
  16. 16.
    M V Ushcats, L A Bulavin, V M Sysoev and S Yu Ushcats, Phys. Rev. E 96, 062115 (2017)ADSCrossRefGoogle Scholar
  17. 17.
    S Ushcats, M Ushcats, L Bulavin, O Svechnikova and I Mykheliev, Pramana – J. Phys. 91(3): 31 (2018)Google Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.School of Pure and Applied PhysicsKannur UniversityPayyannurIndia
  2. 2.Nehru Arts and Science CollegeKanhangadIndia
  3. 3.University of CalicutThenhipalamIndia

Personalised recommendations