Advertisement

Pramana

, 92:32 | Cite as

Characteristics of solar microflares as seen in soft X-ray emission

  • Pramod KumarEmail author
  • R Jain
  • Y C Bhatt
  • Y S Shishodia
Article
  • 7 Downloads

Abstract

In this paper, we present the thermal and non-thermal characteristics of solar plasma producing microflares in 4–12 keV energy range. The X-ray spectra of 10 B-class solar microflares observed by the silicon (Si) detector (4–25 keV) on-board solar X-ray spectrometer (SOXS) mission were analysed in 4–12 keV energy range. We employed forward fitting for the spectral modelling of thermal and non-thermal components of X-ray spectra with isothermal, multithermal and single power-law functions in order to determine flare parameters. The fit results obtained from the combination of isothermal and single power-law functions yield a weighted mean value of emission measure \((\mathrm{EM})\approx 0.0203 \times 10^{49} \mathrm{cm^{-3}} \), plasma temperature [Case (1)] \( {T(1)} \approx 10.24\,{\mathrm{MK}}\) and non-thermal spectral index \( \gamma (1) \approx 3.90 \). The fit results obtained from the combination of multithermal and single power-law functions yield a weighted mean value of differential emission measure, \((\mathrm{DEM}) \approx 0.00116 \times 10^{49}\,\mathrm{cm^{-3}}\, \mathrm{keV^{-1}} \), plasma temperature [Case (2)], \({T(2)}\approx 12.90\,{\mathrm{MK}}\), thermal spectral index, \(\delta \approx 4.06\) and non-thermal spectral index, \( \gamma (2) \approx 3.81 \). Further, we obtained the mean value of conduction cooling time, \( \tau _{\mathrm{c}}(T)\approx 283\,{\mathrm{s}}\) at 11.6 MK, thermal energy, \({E_{\mathrm{th}}} \approx 0.50 \times 10^{29}{\mathrm{erg}}\) and thermal–non-thermal cross-over energy, \( \epsilon _{\mathrm{th}} \approx 9.23\) keV. In this analysis, the obtained results were found to be compatible with the earlier analysis carried out for the microflares through Reuven Ramety High Energy Solar Spectroscopic Imager (RHESSI), Solar Dynamics Observatory / Atmospheric Imaging Assembly (SDO/AIA) and NuSTAR observations. Here, we observed that EM decreases with increasing plasma temperature (T). We find that \(\tau _{\mathrm{c}}\)(T) scale with plasma temperature (T) with an inverse gradient exhibits time delay characteristic of the cooling process of plasma. The correlation of \( E_{\mathrm{th}} \) and temperature (T) shows moderate anticorrelation. The present analysis demonstrates the multithermal plasma model and conduction cooling process during high temperature of microflares (similar to large flares) followed by radiative cooling in post-flare.

Keywords

Solar microflares thermal emissions conduction cooling solar X-ray spectrometer mission 

PACS No

12.60.Jv 12.10.Dm 98.80.Cq 11.30.Hv 

Notes

Acknowledgements

The authors are deeply grateful to the anonymous referees for their kind and valuable comments which considerably improved this paper. The authors are thankful to the ISRO for SOXS data availability. P Kumar is very thankful to his friends, especially Dr Manoj Kumar and Dr Kamlendra Awasthi, for their auxiliary support.

References

  1. 1.
    A Schadee, C D Jagar and Z Svestka, Sol. Phys. 89, 287 (1983)ADSCrossRefGoogle Scholar
  2. 2.
    E N Parker, J. Geophys. Res. 62(4), 509 (1957)ADSCrossRefGoogle Scholar
  3. 3.
    E N Parker, Astrophys. J. 330, 474 (1988)ADSCrossRefGoogle Scholar
  4. 4.
    A Veronig, M Temmer, A Hanslmeier, W Otruba and M Messerotti, Astron. Astrophys. 382, 1070 (2002)ADSCrossRefGoogle Scholar
  5. 5.
    S Christe, I G Hannah, S Krucker, J McTiernan and R P Lin, Astrophys. J. 677, 1385 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    I H Hannah, H S Hudson, M Battaglia, S Christe, J Kasparova, S Krucker, M R Kundu and A Veronig, Space Sci. Rev. 159(1–4), 263 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    D F Ryan, R O Milligan, P T Gallagher, B R Dennis, A K Tolbert, R A Schwartz and C A Young, Astrophys. J. Suppl. 11, 202 (2012)Google Scholar
  8. 8.
    A R Inglis and S Christe, Astrophys. J. 789(2), 116 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    R Jain, V Joshi, Y Hanaoka, T Sakurai and N Upadhyay, J. Astrophys. Astron. 27, 175 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    M Gupta, R Jain, J Trivedi and A P Mishra, J. Astrophys. Astron. 29, 171 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    M J Aschwanden, Astrophys. J. 661, 1242 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    P J Wright, I G Hannah, B W Grefenstette, L Glesener, S Krucker, H S Hudson, D M Smith, A J Marsh, S M White and M Kuhar, Astrophys. J. 884(2), 132 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    R Jain, A R Rao, M R Deshpande, B N Dwivedi, P K Manoharan, S Seetha, M N Vahia, H O Vats and P Venkatkrishnan, Bull. Astronom. Soc. India 28, 117 (2000)ADSGoogle Scholar
  14. 14.
    R Jain, H H Dave, A B Shah, N M Vadher, V M Shah, G P Ubale, K S B Manian, C M Solanki, K J Shah, S Kumar, S L Kayash, V D Patel, J J Trivedi and M R Deshpande, Sol. Phys. 227, 89 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    T A Chubb, R W Kreplin and H Friedman, J. Geophys. Res. 71, 3611 (1966)ADSCrossRefGoogle Scholar
  16. 16.
    I J D Craig and J C Brown, Astron. Astrophys. 49, 239 (1976)ADSGoogle Scholar
  17. 17.
    J L Culhane, Mon. Not. R. Astron. Soc. 144, 375 (1969)ADSCrossRefGoogle Scholar
  18. 18.
    K P Dere, E Landi, H E Mason, B C Monsignori Fossi and P R Young, Astron. Astrophys. Suppl. Ser. 125(1), 149 (1997)ADSCrossRefGoogle Scholar
  19. 19.
    J Ireland, A K Tolbert, R A Schwartz, G D Holman and B R Dennis, Astrophys. J. 769(2), 89 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    J L Culhane, J F Vesecky and K J H Phillips, Sol. Phys. 15, 394 (1970)ADSCrossRefGoogle Scholar
  21. 21.
    W T Zaumen and L W Acton, Sol. Phys. 36(1), 139 (1974)ADSCrossRefGoogle Scholar
  22. 22.
    S K Antiochos and P A Sturrock, Astrophys. J. 220, 1137 (1978)ADSCrossRefGoogle Scholar
  23. 23.
    J L Culhane, A T Phillips, M Inda-Koide, T Kosugi, A Fludra, H Kurokawa, K Makishima, C D Pike, T Sakao and T Sakurai, Sol. Phys. 153, 307 (1994)ADSCrossRefGoogle Scholar
  24. 24.
    R Jain, A K Awasthi, A S Rajpurohit and M J Aschwanden, Sol. Phys. 270, 137 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  • Pramod Kumar
    • 1
    Email author
  • R Jain
    • 2
  • Y C Bhatt
    • 1
  • Y S Shishodia
    • 1
  1. 1.Department of PhysicsJagan Nath UniversityJaipurIndia
  2. 2.Physical Research LaboratoryNavrangpura, AhmedabadIndia

Personalised recommendations