Advertisement

Pramana

, 92:14 | Cite as

A numerical investigation of time-dependent MHD axisymmetric transport of Sisko fluid towards elongating porous disk

  • Tariq MahmoodEmail author
  • Z Iqbal
  • Azeem Shahzad
Article
  • 49 Downloads

Abstract

In this paper, we examined the unsteady boundary layer flow and heat transfer of a Sisko fluid model over an axisymmetric stretching porous disk in the presence of uniform magnetic field. Mathematical modelling is performed in cylindrical polar coordinates. By means of suitable transformations, the governing time-dependent partial differential equations are reduced to nonlinear coupled ordinary differential equations. Shooting method with Runge–Kutta of order 5  is employed to compute non-dimensional velocity and temperature. The effects of pertinent parameters are portrayed through graphs. The skin friction coefficient and Nusselt number are tabulated to study the behaviours at the stretching surface.

Keywords

Axisymmetric flow time-dependent flow magnetohydrodynamics porous radial disk numerical solutions 

PACS Nos

44.25.+f 47.10.ad 47.50.−d 

References

  1. 1.
    A W Sisko, Ind. Eng. Chem. Res. 50, 1789 (1958)CrossRefGoogle Scholar
  2. 2.
    A W Sisko, J. Colloid Sci. 15, 89 (1960)CrossRefGoogle Scholar
  3. 3.
    R M Turian, T W Ma, F L G Hsu and M D J Sung, Int. J. Multi. Flow 24, 225 (1998)CrossRefGoogle Scholar
  4. 4.
    A M Siddiqui, M Ahmed and Q K Ghori, Chaos Solitons Fractals 33, 1006 (2007)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Y Wang, T Hayat, N Ali and M Oberlack, Physica A 387, 347 (2008)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    H M Mamboundou, M Khan, T Hayat and F M Mahomed, J. Porous Med. 12, 695 (2009)CrossRefGoogle Scholar
  7. 7.
    M Khan, Q Abbas and K Duru, Int. J. Numer. Methods Fluids 62, 1169 (2010)Google Scholar
  8. 8.
    L Prandtl, Verhandlungen des dritten internationalen mathematiker-kongresses (Leipzig, Druck und Verlag Von B.G., Teubner, Heidelberg, 1904)Google Scholar
  9. 9.
    B C Sakiadis, AIChE J. 7, 26 (1961)CrossRefGoogle Scholar
  10. 10.
    L J Crane, Z. Angew. Math. Phys. 21, 645 (1970)Google Scholar
  11. 11.
    W R Schowalter, AIChE J. 6, 24 (1960)CrossRefGoogle Scholar
  12. 12.
    H I Andersson and B S Dandapat, Stability Appl. Anal. Continuous Media 11, 339 (1991)Google Scholar
  13. 13.
    M Pakdemirli, IMA J. Appl. Math. 50, 133 (1993)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    R Cortell, Appl. Math. Comput. 168, 557 (2005)MathSciNetGoogle Scholar
  15. 15.
    M Yurusoy, Int. J. Eng. Sci. 44, 325 (2006)MathSciNetCrossRefGoogle Scholar
  16. 16.
    C Wang and I Pop, J. Non-Newtonian Fluid Mech. 138, 161 (2006)CrossRefGoogle Scholar
  17. 17.
    S Sharidan, T Mahmood and I Pop, Int. J. Appl. Mech. Eng. 11, 647 (2006)Google Scholar
  18. 18.
    S Mukhopadlyay, Int. J. Heat Mass Transfer 52, 3261 (2009)Google Scholar
  19. 19.
    S Xun, J Zhao, L Zheng, X Chen and X Zhang, Int. J. Heat Mass Transfer 103, 1214 (2016)CrossRefGoogle Scholar
  20. 20.
    G C Dash, R S Tripathy, M M Rashidi and S R Mishra, J. Mol. Liq. 221, 860 (2016)CrossRefGoogle Scholar
  21. 21.
    N Acharya, K Das and P K Kundu, J. Mol. Liq. 225, 418 (2017)CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of SciencesHITEC UniversityTaxilaPakistan
  2. 2.Faculty of Basic SciencesUniversity of Engineering and TechnologyTaxilaPakistan

Personalised recommendations