, 92:28 | Cite as

Comparative study of transport properties using transition metal model potential (TMMP) for 16 liquid metals

  • Kamaldeep G BhatiaEmail author
  • N K Bhatt
  • P R Vyas
  • V B Gohel


We propose a pseudopotential of Kumar form with two parameters, the core radius (\(r_{\mathrm{c}}\)) and the model radius (\(r_{\mathrm{m}}\)), which in practice is reduced to a single-parameter potential taking \(r_{\mathrm{m}}\) as the experimental atomic radius. The validity of the presently used pseudopotential is verified by carrying out a detailed study of transport properties of 16 liquid metals. The results of the liquid metal resistivities using the nearly free electron (NFE) Ziman’s approach and the single-site t-matrix approach are presented and compared with the experimental as well as other theoretical findings. Such comparative study confirms that the t-matrix approach is more appropriate and physically sound for a theoretical understanding of liquid metal resistivity, particularly in the case of transition metals. Furthermore, thermoelectric powers are also calculated using the present method and compared with the available experimental and theoretical results.


Pseudopotential liquid metal resistivity t-matrix approach simple and non-simple metals 


72.15.Cz 71.22.+i 61.25.Mv 



The authors are thankful for the computational facilities developed at the Department of Physics, Gujarat University, Ahmedabad by using the financial assistance of (i) Department of Sciences and Technology (DST), New Delhi through the DST-FIST (Level 1) project (SR / FST / PSI-001 / 2006); (ii) University Grants Commission (UGC), New Delhi through DRS SAP (AP-I) project (F.530 / 10 / DRS / 2020); (iii) Department of Sciences and Technology (DST), New Delhi through the DST-FIST project (SR / FST / PSI-198 / 2014). The authors are also thankful to Ms Namrata Pania (Assistant professor in English, L. J. Institute of Applied Sciences, Gujarat University) for her careful observation, suggestions and corrections to improve the language and readability of the paper.


  1. 1.
    J M Ziman, Philos. Mag. 6, 1013 (1961)ADSCrossRefGoogle Scholar
  2. 2.
    J M Ziman, Adv. Phys. 16(64), 551 (1967)ADSCrossRefGoogle Scholar
  3. 3.
    E M Apfelbaum, Phys. Chem. Liq. 48, 534 (2010)CrossRefGoogle Scholar
  4. 4.
    J G Gasser, J. Phys. Condens. Matter 20, 114103 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    A B Patel, N K Bhatt, B Y Thakore, P R Vyas and A R Jani, Mol. Phys. 112, 2000 (2014)ADSCrossRefGoogle Scholar
  6. 6.
    A B Patel, N K Bhatt, B Y Thakore, P R Vyas and A R Jani, Phys. Chem. Liq. 52, 471 (2014)CrossRefGoogle Scholar
  7. 7.
    P B Thakor, Y A Sonvane, P N Gajjar and A R Jani, Adv. Mater. Lett. 2, 303 (2011)CrossRefGoogle Scholar
  8. 8.
    C H Patel, A B Patel, N K Bhatt and P N Gajjar, Phys. Chem. Liq. 56(2), 153 (2017)CrossRefGoogle Scholar
  9. 9.
    S Sharmin, G M Bhuiyan, M A Khaleque, R I Rashid and S M Rahman, Phys. Status Solidi B 232, 243 (2002)Google Scholar
  10. 10.
    R Evans, D A Greenwood and P Lloyd, Phys. Lett. A 35, 57 (1971)ADSCrossRefGoogle Scholar
  11. 11.
    Y Waseda, The structure of non-crystalline materials (McGraw-Hill International, New York, 1980) p. 203Google Scholar
  12. 12.
    J S Ononiwu, Phys. Status Solidi B 177, 413 (1993)ADSCrossRefGoogle Scholar
  13. 13.
    M Shimoji, Liquid metals (Academic Press, London, 1977) p. 64Google Scholar
  14. 14.
    J A Moriarty, Phys. Rev. B 42, 1609 (1990)ADSCrossRefGoogle Scholar
  15. 15.
    G M Bhuiyan, J L Bretonnet, L E Gonzales and M Silbertt, J. Phys. Condens. Matter 4, 7651 (1992)ADSCrossRefGoogle Scholar
  16. 16.
    C V Pandya, P R Vyas, T C Pandya and V B Gohel, Phys. B: Condens. Matter 307(1–4), 138 (2001)ADSCrossRefGoogle Scholar
  17. 17.
    C V Pandya, P R Vyas, T C Pandya, N Rani and V B Gohel, J. Korean Phys. Soc. 38(4), 377 (2001)Google Scholar
  18. 18.
    V N Antonov, V Yu Milman, V V Nemoshkalenko and A V Zhalko-Titarenko, Z. Phys. B: Condens. Matter 79(2), 233 (1990)ADSCrossRefGoogle Scholar
  19. 19.
    P R Vyas, C V Pandya, T C Pandya and V B Gohel, Pramana – J. Phys. 56(4), 559 (2001)ADSCrossRefGoogle Scholar
  20. 20.
    N E Dubinin, J. Phys: Conf. Ser. 144, 012115 (2009)Google Scholar
  21. 21.
    N E Dubinin, L D Son and N A Vatolin, J. Phys. Condens. Matter 20, 114111 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    A Bano, P Khare and N K Gaur, Pramana – J. Phys. 89, 1 (2017)ADSCrossRefGoogle Scholar
  23. 23.
    L Pollack, J P Perdew, J He, M Marques, F Nogueira and C Fiolhais, Phys. Rev. B 55, 15544 (1997)ADSCrossRefGoogle Scholar
  24. 24.
    J Kumar, Solid State Commun. 21, 945 (1977)ADSCrossRefGoogle Scholar
  25. 25.
    CHEMGLOBE.ORG [Internet]. Zurich: Department of chemistry; c 1998–2015 [cited 2016 Jun 26]. Available from:
  26. 26.
    J Hubbard, Proc. R. Soc. A 243, 336 (1957)ADSGoogle Scholar
  27. 27.
    L J Sham, Proc. R. Soc. A 283, 33 (1965)ADSGoogle Scholar
  28. 28.
    D C Wallace, Thermodynamics of crystals (Dover’s Publication, New York, 1998) p. 316Google Scholar
  29. 29.
    W A Harrison, Solid state theory (Dover’s Publication, New York, 1979) p. 181Google Scholar
  30. 30.
    L I Yastrebov and A A Katsnelson, Foundations of one-electron theory of solids (Mir Publishers, Moscow, 1987) p. 157Google Scholar
  31. 31.
    Y Waseda, A Jain and S Tamaki, J. Phys. F: Met. Phys. 8, 125 (1978)ADSCrossRefGoogle Scholar
  32. 32.
    J B Van Zytveld, J. Non-Cryst. Solids 61&62, 1085 (1984)CrossRefGoogle Scholar
  33. 33.
    P B Thakor, Y A Sonvane and A R Jani, Phys. Chem. Liq. 47, 653 (2009)CrossRefGoogle Scholar
  34. 34.
    J B Van Zytveld, J. Phys. (Paris) Colloq. 41-C8, 503 (1981)Google Scholar
  35. 35.
    Y Kita and Z Morita, J. Non-Cryst. Solids 61&62, 1079 (1984)CrossRefGoogle Scholar
  36. 36.
    J Smithells Colin, Metals reference book edited by E A Brandes and G B Brook (Butterworths, London, 1976) p. 19-1Google Scholar
  37. 37.
    B C Dupree, J B Van Zytveld and J E Enderby, J. Phys. F: Met. Phys. 5, L200 (1975)CrossRefGoogle Scholar
  38. 38.
    H S Schnyders and J B Van, J. Phys. Condens. Matter 8, 10875 (1996)ADSCrossRefGoogle Scholar
  39. 39.
    N E Cusack, Rep. Prog. Phys. 26, 361 (1963)ADSCrossRefGoogle Scholar
  40. 40.
    S Mhiaoui, J G Gasser and A Ben Abdellah, J. Phys. Conf. Ser. 98, 1 (2008)CrossRefGoogle Scholar
  41. 41.
    H J Guntherodt, E Hauser and H U Kunzi, Phys. Lett. A 50, 313 (1974)ADSCrossRefGoogle Scholar
  42. 42.
    J E Enderby and B C Dupree, Philos. Mag. 35, 791 (1977)ADSCrossRefGoogle Scholar
  43. 43.
    R A Howe and J E Enderby, J. Phys. F: Met. Phys.  3, L12 (1973)ADSCrossRefGoogle Scholar
  44. 44.
    S Ichimaru and K Utsumi, Phys. Rev. B 24, 7385 (1981)ADSCrossRefGoogle Scholar
  45. 45.
    B Farid, V Heine, G E Engel, I J Robertson, Phys. Rev. B 48, 11602 (1993)ADSCrossRefGoogle Scholar
  46. 46.
    L F Mattheiss, Phys. Rev. A 139, 1893 (1965)ADSCrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  • Kamaldeep G Bhatia
    • 1
    Email author
  • N K Bhatt
    • 2
  • P R Vyas
    • 3
  • V B Gohel
    • 3
  1. 1.Department of Physics, L.J. Institute of Engineering and TechnologyGujarat Technological UniversityAhmedabadIndia
  2. 2.Department of PhysicsM.K. Bhavnagar UniversityBhavnagarIndia
  3. 3.Department of Physics, School of ScienceGujarat UniversityAhmedabadIndia

Personalised recommendations