Advertisement

Pramana

, 92:23 | Cite as

New exact solutions for the \((3+1)\)-dimensional potential-YTSF equation by symbolic calculation

  • Xiurong Guo
  • Jiangen Liu
  • Yufeng Zhang
  • Qingbiao Wang
Article

Abstract

In this paper, we employ the improved homoclinic test technique and the extended homoclinic test technique. With the help of the symbolic calculation and applying the improved methods, we solve the \((3+1)\)-dimensional potential-Yu–Toda–Sasa–Fukuyama (YTSF) equation to obtain some new periodic kink-wave, periodic soliton and periodic wave solutions.

Keywords

(3\(+\)1)-dimensional potential-Yu–Toda–Sasa–Fukuyama equation homoclinic test technique periodic kink-wave solutions periodic soliton solutions 

PACS Nos

02.30.Jr 02.60.Cb 04.20.Jb 52.35.Mw 

Notes

Acknowledgements

This work was supported by the National Nature Science Foundation of China (Nos 11801323, 11705104), the Project of Shandong Province Higher Education Science and Technology Program (Nos J18KA227, J17KB130), the Shandong Provincial Natural Science Foundation (Nos. ZR2016AM31, ZR2016AQ19) and SDUST Research Fund (No. 2018TDJH101).

References

  1. 1.
    S J Yu et al, J. Phys. A 31, 3337 (1998)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Z Y Yan, Phys. Lett. A 318, 78 (2003)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    T X Zhang et al, Chaos Solitons Fractals 34, 1006 (2007)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    X Zeng, Z Dai and D Li, Chaos Solitons Fractals 42, 657 (2009)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    H Z Li and Xiqiang Liu, Commun. Theor. Phys. 45, 487 (2006)Google Scholar
  6. 6.
    J Liu and Z Zeng, Indian J. Pure Appl. Math. 45, 989 (2014)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Z Li and Z Dai, Comput. Math. Appl. 68, 1939 (2011)CrossRefGoogle Scholar
  8. 8.
    M Foroutan, J Manafian and A Ranjbaran, Nonlinear Dyn. 92, 2077 (2018)CrossRefGoogle Scholar
  9. 9.
    W X Ma, T Huang and Y Zhang, Phys. Scr. 82, 065003 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    L B Cheng, X Q L and Z Hong, Commun. Theor. Phys. 42, 827 (2004)Google Scholar
  11. 11.
    W Tan and Z Dai, Nonlinear Dyn. 85, 817 (2016)CrossRefGoogle Scholar
  12. 12.
    Y F Zhang and W X Ma, Appl. Math. Comput. 256, 252 (2015)MathSciNetGoogle Scholar
  13. 13.
    Y F Zhang and W X Ma, Z. Naturforsch. 70, 263 (2015)ADSGoogle Scholar
  14. 14.
    J G Liu and Y F Zhang, Mod. Phys. Lett. B 32, 1850012 (2018)ADSCrossRefGoogle Scholar
  15. 15.
    J G Liu and Y F Zhang, Z. Naturforsch. 73, 143 (2018)ADSCrossRefGoogle Scholar
  16. 16.
    M Dehghan and J Manafian, Z. Naturforsch. 64, 420 (2009)ADSGoogle Scholar
  17. 17.
    M Dehghan, J Manafian and A Saadatmandi, Numer. Methods Partial Differ. Equ. J. 26, 448 (2010)Google Scholar
  18. 18.
    M Dehghan, J Manafian and A Saadatmandi, Z. Naturforsch. 65, 935 (2010)ADSGoogle Scholar
  19. 19.
    M Dehghan, J M Heris and A Saadatmandi, Math. Methods Appl. Sci. 33, 1384 (2010)MathSciNetGoogle Scholar
  20. 20.
    M Dehghan, H J Manafian and A Saadatmandi, Int. J. Numer. Methods Heat Fluid Flow 21, 736 (2011)CrossRefGoogle Scholar
  21. 21.
    Z Du, et al, Pramana – J. Phys. 90:45 (2018)Google Scholar
  22. 22.
    J Manafian, J Jalali and A Ranjbaran, Opt. Quantum Electron. 49, 406 (2017)CrossRefGoogle Scholar
  23. 23.
    J Manafian, Optik 127, 4222 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    J Manafian and M Lakestani, Optik 127, 5543 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    A R Seadawy, Pramana – J. Phys. 89:49 (2017)Google Scholar
  26. 26.
    M Jahani and J Manafian, Eur. Phys. J. Plus 131, 54 (2016)CrossRefGoogle Scholar
  27. 27.
    J Manafian, Eur. Phys. J. Plus 130, 255 (2015)CrossRefGoogle Scholar
  28. 28.
    C T Sindi and J Manafian, Eur. Phys. J. Plus 132, 67 (2017)CrossRefGoogle Scholar
  29. 29.
    S C Teymuri and J Manafian, Math. Methods Appl. Sci. 40, 4350 (2017)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    J Basingwa et al, Pramana – J. Phys. 87:64 (2016)ADSCrossRefGoogle Scholar
  31. 31.
    Y F Zhang, J Q Mei and X Z Zhang, Appl. Math. Comput. 337, 408 (2018)MathSciNetGoogle Scholar
  32. 32.
    M Foroutan, I Zamanpour and J Manafian, Eur. Phys. J. Plus 132, 421 (2017)CrossRefGoogle Scholar
  33. 33.
    J Manafian et al, Optik 135, 395 (2017)ADSCrossRefGoogle Scholar
  34. 34.
    M Dehghan, J Manafian and A Saadatmandi, Int. J. Mod. Phys. B 25, 2965 (2011)ADSCrossRefGoogle Scholar
  35. 35.
    M Dehghan, J Manafian and A Saadatmandi, Int. J. Numer. Methods Heat Fluid Flow 22, 777 (2012)Google Scholar
  36. 36.
    S C Teymuri and J Manafian, Math. Methods Appl. Sci. 40, 4350 (2017)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    W X Ma and E G Fan, Comput. Math. Appl. 61, 950 (2011)MathSciNetCrossRefGoogle Scholar
  38. 38.
    J G Liu, Y F Zhang and I Muhammad, Comput. Math. Appl. 75, 3939 (2018)MathSciNetCrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  • Xiurong Guo
    • 1
    • 2
  • Jiangen Liu
    • 3
  • Yufeng Zhang
    • 2
  • Qingbiao Wang
    • 4
  1. 1.Basic CoursesShandong University of Science and TechnologyTai’anPeople’s Republic of China
  2. 2.School of MathematicsChina University of Mining and TechnologyXuzhouPeople’s Republic of China
  3. 3.State Key Laboratory for Geomechanics and Deep Underground EngineeringChina University of Mining and TechnologyXuzhouPeople’s Republic of China
  4. 4.National Engineering Laboratory for Coalmine Backfilling MiningShandong University of Science and TechnologyTai’anPeople’s Republic of China

Personalised recommendations