Advertisement

Pramana

, 92:26 | Cite as

Hybrid scheme for factorisation: Factoring 551 using a 3-qubit NMR quantum adiabatic processor

  • Soham PalEmail author
  • Saranyo Moitra
  • V S Anjusha
  • Anil Kumar
  • T S Mahesh
Article
  • 40 Downloads

Abstract

Quantum processors are potentially superior to their classical counterparts for many computational tasks including factorisation. Circuit methods as well as adiabatic methods have already been proposed and implemented for finding the factors of a given composite number. The main challenge in scaling it to larger numbers is the unavailability of large number of qubits. Here, we propose a hybrid scheme that involves both classical and quantum computation, based on the previous work of Peng et al, Phys. Rev. Lett. 101(22), 220405 (2008), which reduces the number of qubits required for factorisation. The classical part involves setting up and partially simplifying a set of bit-wise factoring equations and the quantum part involves solving these coupled equations using a quantum adiabatic process. We demonstrate the hybrid scheme by factoring 551 using a 3-qubit NMR quantum register.

Keywords

Quantum computation quantum cryptography quantum communication NMR implementation of quantum computation 

PACS Nos

03.67.Ac 03.67.Dd 03.67.Lx 

Notes

Acknowledgements

The authors acknowledge the useful discussions with Sudheer Kumar and Abhishek Shukla. SP and SM acknowledge the hospitality from Indian Institute of Science where this work was initiated. SM would like to thank Indian Academy of Sciences for the support during this period. This work was supported by the Department of Science and Technology, India (Grant Number DST / SJF / PSA-03 / 2012-13) and Council of Scientific and Industrial Research, India (Grant Number CSIR-03(1345) / 16 / EMR-II).

References

  1. 1.
    N Koblitz, A course in number theory and cryptography (Springer, New York, 1994) Vol. 114Google Scholar
  2. 2.
    P W Shor, Proc. 35th Annual Symposium on Foundations of Computer Science (IEEE Computer Society Press, Los Alatimos, CA, 1994) pp. 124–134Google Scholar
  3. 3.
    P W Shor, SIAM Rev. 41(2), 303 (1999)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    L  M K Vandersypen, M Steffen, G Breyta, C S Yannoni, M H Sherwood and I L Chuang, Nature 414(6866), 883 (2001)ADSCrossRefGoogle Scholar
  5. 5.
    C-Y Lu, D E Browne, T Yang and J-W Pan, Phys. Rev. Lett. 99, 250504 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    T Monz, D Nigg, E A Martinez, M F Brandl, P Schindler, R Rines, S X Wang, I L Chuang and R Blatt, Science 351(6277), 1068 (2016)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    M A Nielsen and I L Chuang, Quantum computation and quantum information (Cambridge University Press, Cambridge, 2010)Google Scholar
  8. 8.
    X Peng, Z Liao, N Xu, G Qin, X Zhou, D Suter and J Du, Phys. Rev. Lett. 101(22), 220405 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    N Xu, J Zhu, D Lu, X Zhou, X Peng and J Du, Phys. Rev. Lett. 108(13), 130501 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    N S Dattani and N Bryans, Quantum factorization of 56153 with only 4 qubits, arXiv preprint arXiv:1411.6758 (2014)
  11. 11.
    E Farhi, J Goldstone, S Gutmann, J Lapan, A Lundgren and D Preda, Science 292(5516), 472 (2001)Google Scholar
  12. 12.
    H Hu et al Phys. Rev. A 93(1), 012345 (2016)Google Scholar
  13. 13.
    A Messiah, Quantum mechanics (North-Holland, Amsterdam, 1962) Vol. 2Google Scholar
  14. 14.
    A Mitra, T S Mahesh and A Kumar, J. Chem. Phys. 128(12), 124110 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    J Cavanagh, W J Fairbrother, A G Palmer III and N J Skelton, Protein NMR spectroscopy: Principles and practice (Academic Press, San Diego, 1995)Google Scholar
  16. 16.
    M H Levitt, Spin dynamics: Basics of nuclear magnetic resonance (Wiley-VCH, Chichester, 2001)Google Scholar
  17. 17.
    D G Cory, M D Price and T F Havel, Phys. D: Nonlinear Phenom. 120(1), 82 (1998)ADSCrossRefGoogle Scholar
  18. 18.
    E Knill, I Chuang and R Laflamme, Phys. Rev. A 57, 3348 (1998)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    J R Samal, A K Pati and A Kumar, Phys. Rev. Lett. 106, 080401 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    G Bhole, V S Anjusha and T S Mahesh, Phys. Rev. A 93, 042339 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    J A Jones, S D Karlen, J Fitzsimons, A Ardavan, S C Benjamin, G A D Briggs and J J L Morton, Science 324(5931), 1166 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    I L Chuang, N Gershenfeld, M G Kubinec and D W Leung, Proc. R. Soc. London A: Math. Phys. Eng. Sci. 454, 447 (1998)ADSCrossRefGoogle Scholar
  23. 23.
    R Das, T S Mahesh and A Kumar, Phys. Rev. A 67(6), 062304 (2003)ADSCrossRefGoogle Scholar
  24. 24.
    A M Childs, E Farhi and J Preskill, Phys. Rev. A 65, 012322 (2001)ADSCrossRefGoogle Scholar
  25. 25.
    W Van Dam, M Mosca and U Vazirani, Proceedings of the 42nd Symposium on Foundations of Computer Science (IEEE, Los Alatimos, 2001) pp. 279–287Google Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  • Soham Pal
    • 1
    Email author
  • Saranyo Moitra
    • 2
  • V S Anjusha
    • 1
  • Anil Kumar
    • 3
  • T S Mahesh
    • 1
  1. 1.Department of PhysicsIndian Institute of Science Education and ResearchPashanIndia
  2. 2.SISSA – International School for Advanced StudiesTriesteItaly
  3. 3.Department of Physics and NMR Research CentreIndian Institute of ScienceBengaluruIndia

Personalised recommendations