Advertisement

Pramana

, 92:18 | Cite as

A reliable algorithm for fractional Bloch model arising in magnetic resonance imaging

  • Amit PrakashEmail author
  • Manish Goyal
  • Shivangi Gupta
Article

Abstract

Magnetic resonance imaging (MRI) is used in physics, chemistry, engineering and medicine to study complex materials. In this paper, numerical solution of fractional Bloch equations in MRI is obtained using fractional variation iteration method (FVIM) and fractional homotopy perturbation transform method (FHPTM). Sufficient conditions for the convergence of FVIM and its error estimate are established. The obtained results are compared with the existing as well as recently developed methods and with the exact solution. The obtained numerical results for different fractional values of time derivative are discussed with the help of figures and tables. Figures are drawn using the Maple package. Test examples are provided to illustrate the accuracy and competency of the proposed schemes.

Keywords

Fractional model of Bloch equations fractional variation iteration method magnetic resonance imaging Caputo fractional derivative fractional homotopy perturbation transform method 

PACS Nos

76.60.−k 87.19.Lf 87.10.Ed 02.60.Cb 

Notes

Acknowledgements

The authors are thankful to the anonymous reviewers and editors for their valuable comments and suggestions to improve the quality of this paper.

References

  1. 1.
    J H He, Bull. Sci. Technol. Soc. 15(2), 86 (1999)Google Scholar
  2. 2.
    A D Robinson, Annu. Rev. Neurosci. 4, 463 (1981)Google Scholar
  3. 3.
    M Mirzazadeh, Pramana – J. Phys. 86(5), 957 (2016)ADSGoogle Scholar
  4. 4.
    R L Bagley and P J Torvik, AIAA J. 23(6), 918 (1985)ADSGoogle Scholar
  5. 5.
    R L Magin, Crit. Rev. Biomed. Eng. 32(1), 1 (2004)Google Scholar
  6. 6.
    G W Bohannan, J. Vib. Control 14(9–10), 1487 (2008)MathSciNetGoogle Scholar
  7. 7.
    N Engheia, IEEE Antennas Propag. Mag. 39(4), 35 (1997)ADSGoogle Scholar
  8. 8.
    G Cooper and D Cowan, Explor. Geophys. 34(1/2), 51 (2003)Google Scholar
  9. 9.
    M F Ali, M Sharma and R Jain, Adv. Eng. Tech. Appl. 5(2), 41 (2016)Google Scholar
  10. 10.
    R L Magin, Comput. Math. Appl. 59(5), 1586 (2010)MathSciNetGoogle Scholar
  11. 11.
    Q Xu, J Huang and L Zhou, Proceedings of the 34th Chinese Control Conference (2015) p. 4501Google Scholar
  12. 12.
    H Fallahgoul, S Focardi and F Fabozzi, Fractional calculus and fractional processes with applications to financial economics (Academic Press, San Diego, 2016)zbMATHGoogle Scholar
  13. 13.
    Y W Zhang, Pramana – J. Phys. 90, 34 (2018)Google Scholar
  14. 14.
    R Panda and M Dash, Signal Process. 86(9), 2340 (2006)Google Scholar
  15. 15.
    O B Awojoyogber, Phys. A: Stat. Mech. Appl. 339(3–4), 437 (2004)Google Scholar
  16. 16.
    K Murase and N Tanki, Magn. Reson. Imaging 29(1), 126 (2011)ADSGoogle Scholar
  17. 17.
    S Balac and L Chupin, Math. Comput. Model. 48(11–12), 1901 (2008)Google Scholar
  18. 18.
    J C Leyte, Chem. Phys. Lett. 165(2–3), 213 (1990)ADSGoogle Scholar
  19. 19.
    D Matignon, IMACS – SMC Proceedings (Lille, France, 1996) p. 963Google Scholar
  20. 20.
    R L Magin, O Abdullah, D Baleanu and X Zhou, J. Magn. Reson. 190(2), 255 (2008)ADSGoogle Scholar
  21. 21.
    I Petráš, Comput. Math. Appl. 61(2), 341 (2011)MathSciNetGoogle Scholar
  22. 22.
    S Kumar, N Faraz and K Sayevand, Walailak J. Sci. Tech. 11(4), 273 (2014)Google Scholar
  23. 23.
    Q Yu, F Liu, I Turner and K Burrage, J. Comput. Appl. Math. 255, 635 (2014)MathSciNetGoogle Scholar
  24. 24.
    S Qin, F Liu, I Turner, V Vegh and Q Yu, J. Comput. Appl. Math. 319, 308 (2017)MathSciNetGoogle Scholar
  25. 25.
    H Singh, Alexandria Eng. J. 55(3), 2863 (2016)Google Scholar
  26. 26.
    H Singh and C S Singh, Alexandria Eng. J. (in press),  https://doi.org/10.1016/j.aej.2017.07.002 (2017)
  27. 27.
    H Singh, J. King Saud Univ. Eng. Sci. 29(2), 235 (2017)Google Scholar
  28. 28.
    S Qin, F Liu, I W Turner, Q Yang and Q Yu, Comput. Math. Appl. 75(1), 7 (2018)MathSciNetGoogle Scholar
  29. 29.
    Y Zhao, W Bu, X Zhao and Y Tang, J. Comput. Phys. 350, 117 (2017)ADSMathSciNetGoogle Scholar
  30. 30.
    J H He, Int. J. Nonlinear Mech. 34(4), 699 (1999)ADSGoogle Scholar
  31. 31.
    A Prakash and M Kumar, J. Appl. Anal. Comput. 6(3), 738 (2016)MathSciNetGoogle Scholar
  32. 32.
    J H He and X H Wu, Comput. Math. Appl. 54(7–8), 881 (2007)MathSciNetGoogle Scholar
  33. 33.
    A Prakash, M Kumar and K K Sharma, Appl. Math. Comput. 260, 314 (2015)MathSciNetGoogle Scholar
  34. 34.
    J H He, Comput. Method. Appl. M. 178(3–4), 257 (1999)Google Scholar
  35. 35.
    J H He, Int. J. Nonlinear Mech. 35(1), 37 (2000)ADSGoogle Scholar
  36. 36.
    A Prakash, Nonlinear Eng. 5(2), 123 (2016)ADSGoogle Scholar
  37. 37.
    S Kumar, Appl. Math. Model. 38(13), 3154 (2014)MathSciNetGoogle Scholar
  38. 38.
    I Podlubny, Fractional differential equations (Academic Press, New York, 1999)zbMATHGoogle Scholar
  39. 39.
    A A Elbeleze, A Kiliçman and B M Taib, Abstr. Appl. Anal. 2014, 518343 (2014)Google Scholar
  40. 40.
    M G Sakar and H Ergoren, Appl. Math. Model. 39(14), 3972 (2015)MathSciNetGoogle Scholar
  41. 41.
    Z M Odibat, Math. Comput. Model. 51(9–10), 1181 (2010)Google Scholar
  42. 42.
    M Tatari and M Dehghan, J. Comput. Appl. Math. 207(1), 121 (2007)ADSMathSciNetGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Department of MathematicsNational Institute of TechnologyKurukshetraIndia
  2. 2.Department of Mathematics, Institute of Applied Sciences and HumanitiesGLA UniversityMathuraIndia

Personalised recommendations