Advertisement

Pramana

, 92:15 | Cite as

One-dimensional nuclear design analyses of the SST-2

  • Chandan DananiEmail author
  • Deepak Aggarwal
  • H L Swami
  • Vinay Menon
  • Ritesh Srivatsava
  • Aashoo Sharma
  • Deepti Sharma
  • M Hima Bindu
  • Jyoti Agrawal
  • M Manoah Stephen
  • Naveen Rastogi
  • Pramit Dutta
  • Someswar Dutta
  • Upendra Prasad
  • M Warrier
  • R Srinivasan
Article
  • 32 Downloads

Abstract

Steady State Tokamak-2 (SST-2) will be an intermediate fusion machine before Indian DEMOnstration power reactor (DEMO) development to realise the reactor technologies. It is designed for fusion gain \(Q=5\) and fusion power in the range of 100–300 MW. Nuclear design analyses of SST-2 machine have been carried out to support the conceptual design work. Analyses have been carried out for two breeding blanket concepts: Indian lead–lithium ceramic breeder (LLCB) and helium-cooled ceramic breeder (HCCB). The analyses assess the tritium production and radiation shielding capability of the machine referring to the engineering design parameters. In this study, one-dimensional radiation transport calculations have been performed to assess the SST-2 nuclear responses for 1 full power year (FPY) operation. Nuclear responses such as tritium breeding ratio (TBR), various radiation loads to toroidal field (TF) coil have been calculated to obtain the radial build-up of SST-2 capable of breeding tritium and satisfying the shielding requirements. The assessment has been made using the ANISEN code and FENDL 2.1 cross-section library. It is observed that the TBRs with LLCB and HCCB blankets are 0.85 and 0.94, respectively. Shielding calculations confirm that the radial build is sufficient to protect the superconducting TF coils for 1 FPY.

Keywords

Fusion reactor breeding blanket neutronics tritium breeding ratio 

PACS Nos

28.52.–s 28.52.Av 28.52.Fa 28.52.Lf 

Notes

Acknowledgements

The authors would like to thank Krishan Kumar Gotewal, A Chakraborty, S S Khirwadkar, E Rajendra Kumar, S Pradhan, S P Deshpande and P K Kaw for their useful suggestions and encouragement for this work.

References

  1. 1.
    R B Grover and Subhash Chandra, Energy Policy 34, 2834 (2006)Google Scholar
  2. 2.
    R Srinivasan et al, Fusion Eng. Des. 83, 889 (2008)CrossRefGoogle Scholar
  3. 3.
    R Srinivasan et al, Fusion Eng. Des. 112, 240 (2016)CrossRefGoogle Scholar
  4. 4.
    L A El-Guebaly et al, Fusion Eng. Des. 80, 99 (2006)CrossRefGoogle Scholar
  5. 5.
    L A El-Guebaly et al, Fusion Eng. Des. 38, 139 (1997)CrossRefGoogle Scholar
  6. 6.
    U Fischer et al, Fusion Eng. Des. 84, 323 (2009)CrossRefGoogle Scholar
  7. 7.
    U Fischer et al, Fusion Eng. Des. 85, 1133 (2010)CrossRefGoogle Scholar
  8. 8.
    M E Sawan et al, Fusion Eng. Des. 81, 505 (2006)CrossRefGoogle Scholar
  9. 9.
    M E Sawan et al, Fusion Eng. Des. 49, 667 (2000)CrossRefGoogle Scholar
  10. 10.
    T Hayashi et al, Fusion Eng. Des. 81, 1285 (2006)CrossRefGoogle Scholar
  11. 11.
    S Liu et al, Fusion Eng. Des. 88, 2404 (2013)CrossRefGoogle Scholar
  12. 12.
    X Zhang et al, Plasma Sci. Technol. 19, 115602 (2017)CrossRefGoogle Scholar
  13. 13.
    Q J Zhu, J Li and S L Liu, Plasma Sci. Technol. 18, 775 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    V Menon et al, Physics design and analysis code SPECTRE for tokamak based fusion reactors, 25th IAEA Fusion Energy Conference (FEC) (Saint Petersburg, Russia, 2014)Google Scholar
  15. 15.
    W W Engle Jr, A user’s manual for ANISN, K-1693 (March 1967)Google Scholar
  16. 16.
    L D Aldama and A Trkov, FENDL-2 1: Update of an evaluated nuclear data library for fusion applications (International Atomic Energy Agency, Vienna, 2004)Google Scholar
  17. 17.
    E Rajendra Kumar et al, Fusion Eng. Des. 109, 1522 (2016)CrossRefGoogle Scholar
  18. 18.
    P Chaudhuri et al, Fusion Eng. Des. 89, 1362 (2014)CrossRefGoogle Scholar
  19. 19.
    H L Swami et al, Fusion Eng. Des. 113, 71 (2016)CrossRefGoogle Scholar
  20. 20.
    P Chaudhuri et al, Fusion Eng. Des. 88, 209 (2013)CrossRefGoogle Scholar
  21. 21.
    P Chaudhuri, C Danani and E Rajendrakumar, Plasma Sci. Technol. 19, 125604 (2017)CrossRefGoogle Scholar
  22. 22.
    U Fischer et al, Fusion Eng. Des. 98–99, 2134 (2015)CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  • Chandan Danani
    • 1
    • 2
  • Deepak Aggarwal
    • 1
  • H L Swami
    • 1
  • Vinay Menon
    • 1
  • Ritesh Srivatsava
    • 1
  • Aashoo Sharma
    • 1
  • Deepti Sharma
    • 1
  • M Hima Bindu
    • 1
  • Jyoti Agrawal
    • 1
  • M Manoah Stephen
    • 1
  • Naveen Rastogi
    • 1
  • Pramit Dutta
    • 1
  • Someswar Dutta
    • 1
  • Upendra Prasad
    • 1
    • 2
  • M Warrier
    • 2
    • 3
  • R Srinivasan
    • 1
    • 2
  1. 1.Institute for Plasma ResearchGandhinagarIndia
  2. 2.Homi Bhabha National InstituteMumbaiIndia
  3. 3.Computational Analysis DivisionBhabha Atomic Research CentreVisakhapatnamIndia

Personalised recommendations