Advertisement

Pramana

, 92:24 | Cite as

Soliton solutions to the non-local Boussinesq equation by multiple exp-function scheme and extended Kudryashov’s approach

  • Abdullahi Rashid Adem
  • Yakup Yildirim
  • Emrullah Yaşar
Article
  • 18 Downloads

Abstract

In this paper, we study the exact solutions of non-local Boussinesq equation (nlBq) which appears in many scientific fields. We generate dark solitons, singular solitons, a new family of solitons and combo dark–singular soliton-type solutions of nlBq by the extended Kudryashov’s algorithm. Additional solutions such as singular periodic solutions also fall out of this integration scheme. Also, one-soliton, two-soliton and three-soliton type solutions are presented using multiple exp-function algorithm. Lastly, Lie symmetry analysis with the new similarity reductions is also examined.

Keywords

Non-local Boussinesq (nlBq) equation Lie symmetry analysis extended Kudryashov’s algorithm multiple exp-function algorithm 

PACS Nos

02.20.Sv 02.30.Jr 02.70.Wz 04.20.Jb 

References

  1. 1.
    R Hirota, The direct method in soliton theory (Cambridge University Press, 2004) Vol. 155CrossRefGoogle Scholar
  2. 2.
    H I Abdel-Gawad and A Biswas, Acta Phys. Pol. B 47, 1101 (2016)ADSCrossRefGoogle Scholar
  3. 3.
    Z Wang,Y Qin and L Zou, Chin. Phys. B 26, 050504 (2017)ADSCrossRefGoogle Scholar
  4. 4.
    R Willcox, I Loris and J Springael, J. Phys. A 28, 5963 (1995)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    I Loris and R Willox, J. Phys. Soc. Jpn 65, 383 (1996)ADSCrossRefGoogle Scholar
  6. 6.
    A M Wazwaz, Appl. Math. Lett. 26, 1094 (2013)MathSciNetCrossRefGoogle Scholar
  7. 7.
    G W Bluman and S Kumei, Symmetries and differential equations, in: Applied mathematical sciences (Springer-Verlag, New York, 1989) Vol. 81Google Scholar
  8. 8.
    P J Olver, Applications of Lie groups to differential equations, in: Graduate texts in mathematics 2nd edn (Springer-Verlag, Berlin, 1993) Vol. 107Google Scholar
  9. 9.
    N H Ibragimov, CRC handbook of Lie group analysis of differential equations edited by N H Ibrahimov (CRC Press, Boca Raton, FL, 1994–1996) Vols 1–3Google Scholar
  10. 10.
    Y Yıldırım, E Yasar, H Triki, Q Zhou, S P Moshokoa, M Z Ullah, A Biswas and M Belic, Rom. J. Phys. 63, 103 (2018)Google Scholar
  11. 11.
    C M Khalique and A R Adem, Appl. Math. Comput. 216, 2849 (2010)MathSciNetGoogle Scholar
  12. 12.
    Y Yıldırım and E Yaşar, Chaos Solitons Fractals 107, 146 (2018)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    E Yasar,Y Yildirim and C M Khalique, Results Phys. 6, 322 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    M M El-Borai, H M El-Owaidy, H M Ahmed, A H Arnous, S P Moshokoa, A Biswas and M Belic, Optik 128, 57 (2017)ADSCrossRefGoogle Scholar
  15. 15.
    Y Yildirim, N Celik and E Yasar, Results Phys. 7, 3116 (2017)ADSCrossRefGoogle Scholar
  16. 16.
    E Yasar, Y Yildirim and A R Adem, Optik 158, 1 (2018)ADSCrossRefGoogle Scholar
  17. 17.
    A Biswas,Y Yıldırım, E Yaşar, Q Zhou, A S Alshomrani, S P Moshokoa and M Belic, Opt. Quant. Electron. 50, 149 (2018)CrossRefGoogle Scholar
  18. 18.
    N A Kudryashov, Commun. Nonlinear Sci. Numer. Simul. 17, 2248 (2012)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    W X Ma and B Fuchssteiner, Int. J. Nonlinear Mech. 31, 329 (1996)CrossRefGoogle Scholar
  20. 20.
    W X Ma, T W Huang and Y Zhang, Phys. Scr. 82, 065003 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    W X Ma and Z N Zhu, Appl. Math. Comput. 218, 11871 (2012)MathSciNetGoogle Scholar
  22. 22.
    A R Adem, Comput. Math. Appl. 71, 1248 (2016)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Y Yıldırım and E Yaşar, Chin. Phys. B 26, 070201 (2017)ADSCrossRefGoogle Scholar
  24. 24.
    Y Yildirim, E Yasar and A R Adem, Nonlinear Dyn. 89, 2291 (2017)CrossRefGoogle Scholar
  25. 25.
    W X Ma and Y Zhou, J. Diff. Eqns 264, 2633 (2018)ADSCrossRefGoogle Scholar
  26. 26.
    S T Chen and W X Ma, Front. Math. China 13, 525 (2018)MathSciNetCrossRefGoogle Scholar
  27. 27.
    J B Zhang and W X Ma, Comput. Math. Appl. 74, 591 (2017)MathSciNetCrossRefGoogle Scholar
  28. 28.
    H Q Zhao and W X Ma, Comput. Math. Appl. 74, 1399 (2017)MathSciNetCrossRefGoogle Scholar
  29. 29.
    W X Ma, X Yong and H Q Zhang, Comput. Math. Appl. 75, 289 (2018)MathSciNetCrossRefGoogle Scholar
  30. 30.
    J Y Yang, W X Ma and Z Qin, Anal. Math. Phys. 8, 427 (2018)MathSciNetCrossRefGoogle Scholar
  31. 31.
    J Boussinesq, J. Math. Pure Appl. 17, 55 (1872)MathSciNetGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  • Abdullahi Rashid Adem
    • 1
  • Yakup Yildirim
    • 2
  • Emrullah Yaşar
    • 2
  1. 1.Material Science Innovation and Modelling Focus Area, School of Mathematical and Statistical SciencesNorth-West UniversityMmabathoSouth Africa
  2. 2.Department of Mathematics, Faculty of Arts and SciencesUludag UniversityBursaTurkey

Personalised recommendations