, 92:27 | Cite as

The description of quantum dielectric function for insulators over Bethe surface

  • Nabil Janan Al-BahnamEmail author


A new expression for the dielectric function is suggested here, which is the Mermin–Belkacem-Sigmund (MBS) model derived from the Belkacem–Sigmund (BS) model based on the conservation of a local particle number in the Mermin model. The energy loss function expressions are reviewed analytically for both models, and these dielectric functions were used to calculate the Bethe sum rule, the energy loss function (ELF), as well as the differential inelastic inverse mean free path (DIIMP) for \(\mathrm{H}_2\mathrm{O}\). The indication from the results is that, compared to the BS dielectric function, the MBS dielectric function is more compatible in its consistency with the exact Bethe sum rule. The ELF for the MBS type is compatible relatively in high and low momentum transfers, while the ELF for the BS type is suitable for high-k. The two models of ELF were also applied to evaluate DIIMP for electron kinetic energy 1 keV, and these were compared with the results predicted in several ways via the SESINIPAC program, using the Mermin dielectric function and the extended Drude and Monte–Carlo method. These predicted results are in reasonable agreement with those estimated from other methods at the range of energy transfer (0–50) eV.


Energy loss function differential inelastic inverse mean free path local particle number Bethe surface dielectric function 


41.75.Ak 32.70.Cs 34.50.Bw 



The author would like to thank Dr P Sigmund, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, and Dr R I Mahdi, Low Dimensional Material Research Center, Physics Department, University of Malaya, Malaysia, for fruitful discussions and support. The author also acknowledges Dr Abdullah Ibrahim Al-Numan, Department of Physics, College of Science for Women, Baghdad University, Iraq, for the suggestion for using BS dielectric function with Mermin model.


  1. 1.
    D Belkić, Fast ion-atom and ion-molecule collisions (World Scientific, Singapore, 2012)CrossRefGoogle Scholar
  2. 2.
    C Kittel, Introduction to solid state physics, 8th edn (Wiley, USA, 2005)zbMATHGoogle Scholar
  3. 3.
    Z-J Yang, T J Antosiewicz, R Verre, F J García de Abajo, S P Apell and M Käll, Nano Lett. 15, 7633 (2015)CrossRefADSGoogle Scholar
  4. 4.
    R I Mahdi, N J Al-Bahnam, A I Abbo, J K Hmood and W H A Majid, J. Alloys Compd. 688(Part A), 77 (2016)Google Scholar
  5. 5.
    M Malligavathy, S Iyyapushpam, S T Nishanthi and D P Padiyan, Pramana – J. Phys. 90: 44 (2018)Google Scholar
  6. 6.
    S Singh and M N Tripathi, Pramana – J. Phys. 89: 5 (2017)Google Scholar
  7. 7.
    R G-M Isabel Abril, P D Vera, I Kyriakou, D Emfietzoglou, C Champion, C C Montanari and J E Miraglia, Advances in quantum chemistry, 1st edn (Academic Press, Elsevier, 2013)Google Scholar
  8. 8.
    C A Volkert and A M Minor, MRS Bull. 32, 389 (2011)CrossRefGoogle Scholar
  9. 9.
    A V Krasheninnikov and K Nordlund, J. Appl. Phys. 107, 071301 (2010)CrossRefADSGoogle Scholar
  10. 10.
    F Watt, M B Breese, A A Bettiol and J A van Kan, Mater. Today 10, 20 (2007)CrossRefGoogle Scholar
  11. 11.
    Y Yao, P Santhana Raman and J A van Kan, Microsyst. Technol. 20, 2065 (2014)CrossRefGoogle Scholar
  12. 12.
    A S Gangnaik, Y M Georgiev and J D Holmes, Chem. Mater. 29, 1898 (2017)CrossRefGoogle Scholar
  13. 13.
    H Jin, H Shinotsuka, H Yoshikawa, H Iwai, M Arai, S Tanuma and S Tougaard, Surf. Interface Anal. 45, 985 (2013)CrossRefGoogle Scholar
  14. 14.
    R Garcia-Molina, I Abril, I Kyriakou and D Emfietzoglou, Surf. Interface Anal. 49, 11 (2017)CrossRefGoogle Scholar
  15. 15.
    D Shindo and T Oikawa, Analytical electron microscopy for materials science, 1st edn (Springer, Japan, 2002)CrossRefGoogle Scholar
  16. 16.
    A Belkacem and P Sigmund, Nucl. Instrum. Methods B 48, 29 (1990)CrossRefADSGoogle Scholar
  17. 17.
    J A LaVerne and A Mozumder, Radiat. Res. 96, 219 (1983)CrossRefADSGoogle Scholar
  18. 18.
    J Lindhard, Mat. Fys. Medd. Dan. Vid. Selsk. 28, 1 (1954)MathSciNetGoogle Scholar
  19. 19.
    K L Kliewer and R Fuchs, Phys. Rev. 181, 552 (1969)CrossRefADSGoogle Scholar
  20. 20.
    N D Mermin, Phys. Rev. B 1, 2362 (1970)CrossRefADSGoogle Scholar
  21. 21.
    H Nikjoo, S Uehara and D Emfietzoglou, Interaction of radiation with matter, 1st edn (CRC Press, USA, 2012)zbMATHGoogle Scholar
  22. 22.
    M D Barriga-Carrasco and R Garcia-Molina, Phys. Rev. A 68, 062902 (2003)CrossRefADSGoogle Scholar
  23. 23.
    M D Barriga-Carrasco and R Garcia-Molina, Phys. Rev. A 70, 032901 (2004)CrossRefADSGoogle Scholar
  24. 24.
    M D Barriga-Carrasco, Phys. Rev. E 73, 026401 (2006)CrossRefADSGoogle Scholar
  25. 25.
    D Pines and D Bohm, Phys. Rev. 85, 338 (1952)MathSciNetCrossRefADSGoogle Scholar
  26. 26.
    G S Atwal and N W Ashcroft, Phys. Rev. B 65, 115109 (2002)CrossRefADSGoogle Scholar
  27. 27.
    M Barriga-Carrasco, Laser Part. Beams 26, 389 (2008)CrossRefGoogle Scholar
  28. 28.
    M D Barriga-Carrasco, Phys. Rev. E 82, 046403 (2010)CrossRefADSGoogle Scholar
  29. 29.
    M Vos and P L Grande, J. Phys. Chem. Solids 104, 192 (2017)CrossRefADSGoogle Scholar
  30. 30.
    E Popov, Gratings: Theory and numeric applications, 1st edn (Popov, Institut Fresnel, France, 2012)Google Scholar
  31. 31.
    J Cazaux, Surf. Sci. 29, 114 (1972)CrossRefADSGoogle Scholar
  32. 32.
    J Cazaux, Opt. Commun. 3, 221 (1971)CrossRefADSGoogle Scholar
  33. 33.
    P Schattschneider and B Jouffrey, Energy-filtering transmission electron microscopy edited by R Ludwig, Springer Series in Optical Sciences (Springer-Verlag, Berlin, Heidelberg, 1995), pp. XIII, 425.Google Scholar
  34. 34.
    W D Kraeft, D Kremp and M Schlanges, Quantum statistics of nonideal plasmas (Springer-Verlag, Berlin, Heidelberg, New York, 2005)zbMATHGoogle Scholar
  35. 35.
    L Hedin and S Lundqvist, Solid State Phys. 23, 1 (1970)CrossRefGoogle Scholar
  36. 36.
    N J Al-Bahnam, K A Ahmad and A I Aboo Al-Numan, Phys. Lett. A 381, 616 (2017)CrossRefADSGoogle Scholar
  37. 37.
    P Sigmund, Particle penetration and radiation effects: General aspects and stopping of swift point charges (Springer, Germany, 2006)CrossRefGoogle Scholar
  38. 38.
    P Sigmund, Particle penetration and radiation effects (Springer, Switzerland, 2014)CrossRefGoogle Scholar
  39. 39.
    H Esbensen and P Sigmund, Ann. Phys. 201, 152 (1990)CrossRefADSGoogle Scholar
  40. 40.
    A C Ferrari, A Libassi, B K Tanner, V Stolojan, J Yuan, L M Brown, S E Rodil, B Kleinsorge and J Robertson, Phys. Rev. B 62, 11089 (2000)CrossRefADSGoogle Scholar
  41. 41.
    I Abril, C D Denton, P de Vera, I Kyriakou, D Emfietzoglou and R Garcia-Molina, Nucl. Instrum. Methods B 268, 1763 (2010)CrossRefADSGoogle Scholar
  42. 42.
    A M Sánchez, R Beanland, M H Gass, A J Papworth, P J Goodhew and M Hopkinson, Phys. Rev. B 72, 075339 (2005)CrossRefADSGoogle Scholar
  43. 43.
    K Sturm, Adv. Phys. 31, 1 (1982)CrossRefADSGoogle Scholar
  44. 44.
    Y Sun, H Xu, B Da, S-F Mao and Z-J Ding, Chin. J. Chem. Phys. 29, 663 (2016)CrossRefGoogle Scholar
  45. 45.
    L Calliari, M Dapor, G Garberoglio and S Fanchenko, Surf. Interface Anal. 46, 340 (2014)CrossRefGoogle Scholar
  46. 46.
    C D Archubi and N R Arista, Eur. Phys. J. B 90, 18 (2017)CrossRefADSGoogle Scholar
  47. 47.
    R Ritchie and A Howie, Philos. Mag. 36, 463 (1977)CrossRefADSGoogle Scholar
  48. 48.
    N R Arista, Phys. Rev. A 64, 032901 (2001)CrossRefADSGoogle Scholar
  49. 49.
    G Barnea, J. Phys. C 12, L263 (1979)CrossRefADSGoogle Scholar
  50. 50.
    D Emfietzoglou, I Kyriakou, R Garcia-Molina, I Abril and H Nikjoo, Radiat. Res. 180, 499 (2013)CrossRefADSGoogle Scholar
  51. 51.
    C D Denton, I Abril, R Garcia-Molina, J C Moreno-Marín and S Heredia-Avalos, Surf. Interface Anal. 40, 1481 (2008)CrossRefGoogle Scholar
  52. 52.
    H Shinotsuka, B Da, S Tanuma, H Yoshikawa, C J Powell and D R Penn, Surf. Interface Anal. 49, 238 (2017)CrossRefGoogle Scholar
  53. 53.
    N Watanabe, H Hayashi and Y Udagawa, J. Phys. Chem. Solids 61, 407 (2000)CrossRefADSGoogle Scholar
  54. 54.
    D Emfietzoglou, I Kyriakou, I Abril, R Garcia-Molina, I D Petsalakis, H Nikjoo and A Pathak, Nucl. Instrum. Methods B 267, 45 (2009)CrossRefADSGoogle Scholar
  55. 55.
    G M Hale and M R Querry, Appl. Opt. 12, 555 (1973)CrossRefADSGoogle Scholar
  56. 56.
    N Watanabe, H Hayashi and Y Udagawa, Bull. Chem. Soc. Jpn 70, 719 (1997)CrossRefGoogle Scholar
  57. 57.
    H Hayashi, N Watanabe, Y Udagawa and C-C Kao, Proc. Natl Acad. Sci. 97, 6264 (2000)CrossRefADSGoogle Scholar
  58. 58.
    G García Gómez-Tejedor and D M C Fuss, Radiation damage in biomolecular systems, 1st edn (Springer, Dordrecht, Heidelberg, London, New York, 2012)CrossRefGoogle Scholar
  59. 59.
    B T Wong and P M Mengüç, Thermal transport for applications in micro/nanomachining (Springer Science & Business Media, Germany, 2008)CrossRefGoogle Scholar
  60. 60.
    R Egerton, Electron energy-loss spectroscopy in the electron microscope, 3rd edn (Springer, US, 2011)CrossRefGoogle Scholar
  61. 61.
    M Dingfelder, Appl. Radiat. Isot. 83, 142 (2014)CrossRefGoogle Scholar
  62. 62.
    M Dingfelder and D Emfietzoglou, Advanced Monte Carlo for radiation physics, particle transport simulation and applications edited by A Kling et al (Springer-Verlag, Berlin, Heidelberg, Germany, 2000)Google Scholar
  63. 63.
    T Boutboul, A Akkerman, A Breskin and R Chechik, J. Appl. Phys. 79, 6714 (1996)CrossRefADSGoogle Scholar
  64. 64.
    D Emfietzoglou, K Karava, G Papamichael and M Moscovitch, Phys. Med. Biol. 48, 2355 (2003)CrossRefGoogle Scholar
  65. 65.
    M Dapor, Transport of energetic electrons in solids: Computer simulation with applications to materials analysis and characterization (Springer, Switzerland, 2017) Vol. 999Google Scholar
  66. 66.
    M Vos and P L Grande, Nucl. Instrum. Methods B 407, 97 (2017)CrossRefADSGoogle Scholar
  67. 67.
    R Ritchie, R Hamm, J Turner and H Wright, Sixth Symposium on Microdosimetry (Brussels, Belgium, 22–26 May 1978) (Harwood Academic, London, UK, 1978) p. 708Google Scholar
  68. 68.
    N Pauly, M Novák, A Dubus and S Tougaard, Surf. Interface Anal. 44, 1147 (2012)CrossRefGoogle Scholar
  69. 69.
    D Emfietzoglou and H Nikjoo, Radiat. Res. 167, 110 (2007)CrossRefADSGoogle Scholar
  70. 70.
    M Dingfelder, D Hantke, M Inokuti and H G Paretzke, Radiat. Phys. Chem. 53, 1 (1998)CrossRefADSGoogle Scholar
  71. 71.
    R H Ritchie, R N Hamm, J E Turner, H A Wright and W E Bolch, Physical and chemical mechanisms in molecular radiation biology edited by W A Glass and M N Varma (Springer, US, Boston, MA, 1991) pp. 99–135CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Department of Physics, College of Science for WomenUniversity of BaghdadBaghdadIraq

Personalised recommendations